2.2.119 Problems 11801 to 11900

Table 2.251: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

11801

\begin{align*} f \left (y^{2}+x^{2}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

85.346

11802

\begin{align*} \left (y^{2}+x^{2}\right ) f \left (\frac {x}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘]]

7.771

11803

\begin{align*} \left (y^{2}+x^{2}\right ) f \left (\frac {y}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘]]

38.090

11804

\begin{align*} {y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2}&=0 \\ \end{align*}

[_quadrature]

4.405

11805

\begin{align*} {y^{\prime }}^{3}-f \left (x \right ) \left (a y^{2}+b y+c \right )^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

6.810

11806

\begin{align*} {y^{\prime }}^{3}+y^{\prime }-y&=0 \\ \end{align*}

[_quadrature]

96.434

11807

\begin{align*} {y^{\prime }}^{3}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.460

11808

\begin{align*} {y^{\prime }}^{3}-\left (x +5\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.674

11809

\begin{align*} {y^{\prime }}^{3}-a x y^{\prime }+x^{3}&=0 \\ \end{align*}

[_quadrature]

5.957

11810

\begin{align*} {y^{\prime }}^{3}-2 y^{\prime } y+y^{2}&=0 \\ \end{align*}

[_quadrature]

61.135

11811

\begin{align*} {y^{\prime }}^{2}-a x y y^{\prime }+2 a y^{2}&=0 \\ \end{align*}

[_separable]

3.443

11812

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

[_quadrature]

0.428

11813

\begin{align*} {y^{\prime }}^{3}-x y^{4} y^{\prime }-y^{5}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.368

11814

\begin{align*} {y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

29.757

11815

\begin{align*} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_dAlembert]

7.970

11816

\begin{align*} {y^{\prime }}^{3}-y {y^{\prime }}^{2}+y^{2}&=0 \\ \end{align*}

[_quadrature]

22.083

11817

\begin{align*} {y^{\prime }}^{2}-\left (y^{4}+x y^{2}+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+x^{3} y^{2}\right ) y^{\prime }-x^{3} y^{6}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

91.522

11818

\begin{align*} a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d&=0 \\ \end{align*}

[_quadrature]

0.633

11819

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.675

11820

\begin{align*} 4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.477

11821

\begin{align*} 8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.431

11822

\begin{align*} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{3}+b x \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+y^{\prime }+b x&=0 \\ \end{align*}

[_quadrature]

1.056

11823

\begin{align*} x^{3} {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

165.026

11824

\begin{align*} 2 \left (y^{\prime } x +y\right )^{3}-y^{\prime } y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

221.238

11825

\begin{align*} {y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right )&=0 \\ \end{align*}

[_quadrature]

3.074

11826

\begin{align*} 2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 y^{\prime } x -x&=0 \\ \end{align*}

[_quadrature]

2.901

11827

\begin{align*} y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.733

11828

\begin{align*} 16 y^{2} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.796

11829

\begin{align*} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

229.186

11830

\begin{align*} x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

4.191

11831

\begin{align*} {y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2}&=0 \\ \end{align*}

[_quadrature]

1.191

11832

\begin{align*} {y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (-1+2 y\right ) y^{\prime }+3 x&=0 \\ \end{align*}

[_dAlembert]

33.868

11833

\begin{align*} {y^{\prime }}^{4}-4 y \left (y^{\prime } x -2 y\right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

155.454

11834

\begin{align*} {y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3}&=0 \\ \end{align*}

[_quadrature]

1.345

11835

\begin{align*} x^{2} \left (1+{y^{\prime }}^{2}\right )^{3}-a^{2}&=0 \\ \end{align*}

[_quadrature]

0.845

11836

\begin{align*} {y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

4.959

11837

\begin{align*} {y^{\prime }}^{n}-f \left (x \right )^{n} \left (y-a \right )^{n +1} \left (y-b \right )^{n -1}&=0 \\ \end{align*}

[_separable]

23.066

11838

\begin{align*} {y^{\prime }}^{n}-f \left (x \right ) g \left (y\right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.342

11839

\begin{align*} a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y&=0 \\ \end{align*}

[_quadrature]

4.270

11840

\begin{align*} x^{n -1} {y^{\prime }}^{n}-n x y^{\prime }+y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

11.902

11841

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

3.016

11842

\begin{align*} \sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y&=0 \\ \end{align*}

[_dAlembert]

2.838

11843

\begin{align*} x \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

25.505

11844

\begin{align*} a x \sqrt {1+{y^{\prime }}^{2}}+y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

79.075

11845

\begin{align*} y \sqrt {1+{y^{\prime }}^{2}}-a y y^{\prime }-a x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.094

11846

\begin{align*} a y \sqrt {1+{y^{\prime }}^{2}}-2 x y^{\prime } y+y^{2}-x^{2}&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

248.086

11847

\begin{align*} f \left (y^{2}+x^{2}\right ) \sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

105.477

11848

\begin{align*} a \left (1+{y^{\prime }}^{3}\right )^{{1}/{3}}+b x y^{\prime }-y&=0 \\ \end{align*}

[_dAlembert]

1.421

11849

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a y+b&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

13.855

11850

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

7.471

11851

\begin{align*} y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\ \end{align*}

[_separable]

5.069

11852

\begin{align*} \sin \left (y^{\prime }\right )+y^{\prime }-x&=0 \\ \end{align*}

[_quadrature]

0.386

11853

\begin{align*} a \cos \left (y^{\prime }\right )+b y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.380

11854

\begin{align*} {y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y&=0 \\ \end{align*}

[_quadrature]

2.637

11855

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \sin \left (-y+y^{\prime } x \right )^{2}-1&=0 \\ \end{align*}

[_Clairaut]

4.771

11856

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \left (\arctan \left (y^{\prime }\right )+a x \right )+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

1.422

11857

\begin{align*} a \,x^{n} f \left (y^{\prime }\right )+y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

4.008

11858

\begin{align*} f \left (x {y^{\prime }}^{2}\right )+2 y^{\prime } x -y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.120

11859

\begin{align*} f \left (x -\frac {3 {y^{\prime }}^{2}}{2}\right )+{y^{\prime }}^{3}-y&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.970

11860

\begin{align*} y^{\prime }&=F \left (\frac {y}{x +a}\right ) \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

2.568

11861

\begin{align*} y^{\prime }&=2 x +F \left (y-x^{2}\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.578

11862

\begin{align*} y^{\prime }&=-\frac {a x}{2}+F \left (y+\frac {a \,x^{2}}{4}+\frac {b x}{2}\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

4.000

11863

\begin{align*} y^{\prime }&=F \left (y \,{\mathrm e}^{-b x}\right ) {\mathrm e}^{b x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3.203

11864

\begin{align*} y^{\prime }&=\frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.225

11865

\begin{align*} y^{\prime }&=\frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.687

11866

\begin{align*} y^{\prime }&=-\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

6.510

11867

\begin{align*} y^{\prime }&=\frac {2 a}{y+2 F \left (y^{2}-4 a x \right ) a} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

3.946

11868

\begin{align*} y^{\prime }&=F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

13.441

11869

\begin{align*} y^{\prime }&=\frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.806

11870

\begin{align*} y^{\prime }&=\frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8.437

11871

\begin{align*} y^{\prime }&=\frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.712

11872

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-1+y \ln \left (x \right )}{y}\right ) y^{2}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.180

11873

\begin{align*} y^{\prime }&=\frac {x}{-y+F \left (y^{2}+x^{2}\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.657

11874

\begin{align*} y^{\prime }&=\frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.451

11875

\begin{align*} y^{\prime }&=\frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9.167

11876

\begin{align*} y^{\prime }&=\frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.490

11877

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.798

11878

\begin{align*} y^{\prime }&=\frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.038

11879

\begin{align*} y^{\prime }&=\frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4.996

11880

\begin{align*} y^{\prime }&=\frac {2 a}{x^{2} \left (-y+2 F \left (\frac {x y^{2}-4 a}{x}\right ) a \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.724

11881

\begin{align*} y^{\prime }&=\frac {y+F \left (\frac {y}{x}\right )}{x -1} \\ \end{align*}

[[_homogeneous, ‘class D‘]]

6.421

11882

\begin{align*} y^{\prime }&=\frac {-x +F \left (y^{2}+x^{2}\right )}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.562

11883

\begin{align*} y^{\prime }&=\frac {F \left (-\frac {2 y \ln \left (x \right )-1}{y}\right ) y^{2}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.245

11884

\begin{align*} y^{\prime }&=\frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.636

11885

\begin{align*} y^{\prime }&=\frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \\ \end{align*}

[NONE]

7.505

11886

\begin{align*} y^{\prime }&=\frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.312

11887

\begin{align*} y^{\prime }&=\frac {2 y^{3}}{1+2 F \left (\frac {1+4 x y^{2}}{y^{2}}\right ) y} \\ \end{align*}

[‘x=_G(y,y’)‘]

6.554

11888

\begin{align*} y^{\prime }&=-\frac {y^{2} \left (2 x -F \left (-\frac {y x -2}{2 y}\right )\right )}{4 x} \\ \end{align*}

[NONE]

7.010

11889

\begin{align*} y^{\prime }&=-\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

8.158

11890

\begin{align*} y^{\prime }&=\frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.266

11891

\begin{align*} y^{\prime }&=\frac {\sqrt {y}}{\sqrt {y}+F \left (\frac {x -y}{\sqrt {y}}\right )} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

6.898

11892

\begin{align*} y^{\prime }&=\frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.391

11893

\begin{align*} y^{\prime }&=\frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘]]

3.533

11894

\begin{align*} y^{\prime }&=\frac {-2 x -y+F \left (x \left (x +y\right )\right )}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.942

11895

\begin{align*} y^{\prime }&=\frac {\left (y \,{\mathrm e}^{-\frac {x^{2}}{4}} x +2 F \left (y \,{\mathrm e}^{-\frac {x^{2}}{4}}\right )\right ) {\mathrm e}^{\frac {x^{2}}{4}}}{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.960

11896

\begin{align*} y^{\prime }&=\frac {x +y+F \left (-\frac {-y+x \ln \left (x \right )}{x}\right ) x^{2}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.065

11897

\begin{align*} y^{\prime }&=\frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.642

11898

\begin{align*} y^{\prime }&=\frac {y}{x \left (-1+F \left (y x \right ) y\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.637

11899

\begin{align*} y^{\prime }&=-\frac {-x^{2}+2 x^{3} y-F \left (\left (y x -1\right ) x \right )}{x^{4}} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

5.048

11900

\begin{align*} y^{\prime }&=\frac {F \left (\frac {\left (3+y\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

8.726