| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime }&=\frac {-y x -1}{4 x^{3} y-2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.945 |
|
| \begin{align*}
\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {1+y}{y^{2}}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.947 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-x^{2}-y^{2}} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
1.138 |
|
| \begin{align*}
y^{\prime }+\frac {y}{3}&=\frac {\left (1-2 x \right ) y^{4}}{3} \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.805 |
|
| \begin{align*}
y^{\prime }&=\sqrt {y}+x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Chini] |
✓ |
✓ |
✓ |
✗ |
4.549 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.283 |
|
| \begin{align*}
y&=y^{\prime } x +x^{2} {y^{\prime }}^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.068 |
|
| \begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.177 |
|
| \begin{align*}
\frac {y^{\prime }}{x +y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
\frac {y^{\prime }}{x}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 2.792 |
|
| \begin{align*}
2 t +3 x+\left (2+x\right ) x^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.046 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{1-y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.538 |
|
| \begin{align*}
p^{\prime }&=a p-b p^{2} \\
p \left (\operatorname {t0} \right ) &= \operatorname {p0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
12.736 |
|
| \begin{align*}
y^{2}+\frac {2}{x}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| \begin{align*}
f^{\prime } x -f&=\frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
3.583 |
|
| \begin{align*}
y^{\prime } x -2 y+b y^{2}&=c \,x^{4} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
2.266 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=x^{{2}/{3}} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
61.681 |
|
| \begin{align*}
u^{\prime }+u^{2}&=\frac {1}{x^{{4}/{5}}} \\
\end{align*} |
[_rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
0.211 |
|
| \begin{align*}
y^{\prime } y-y&=x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.765 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
5 y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| \begin{align*}
y^{\prime } y&=1-x {y^{\prime }}^{3} \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.212 |
|
| \begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime }&=0 \\
y \left (3\right ) &= 2 \pi \\
y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.050 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.185 |
|
| \begin{align*}
t y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
14.596 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }+4 t^{3} y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.879 |
|
| \begin{align*}
y^{\prime \prime }&=k \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
y^{\prime }&=-4 \sin \left (x -y\right )-4 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
28.224 |
|
| \begin{align*}
y^{\prime }+\sin \left (x -y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.260 |
|
| \begin{align*}
y^{\prime \prime }&=4 \sin \left (x \right )-4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| \begin{align*}
y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.036 |
|
| \begin{align*}
y y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.723 |
|
| \begin{align*}
y y^{\prime \prime }&=x \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.115 |
|
| \begin{align*}
y^{2} y^{\prime \prime }&=x \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
0.227 |
|
| \begin{align*}
y^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.043 |
|
| \begin{align*}
3 y y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} | [NONE] | ✗ | ✗ | ✗ | ✗ | 0.209 |
|
| \begin{align*}
3 y y^{\prime \prime }+y&=5 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
1.636 |
|
| \begin{align*}
a y y^{\prime \prime }+b y&=c \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.195 |
|
| \begin{align*}
a y^{2} y^{\prime \prime }+b y^{2}&=c \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
a y y^{\prime \prime }+b y&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.056 |
|
| \begin{align*}
x^{\prime }&=9 x+4 y \\
y^{\prime }&=-6 x-y \\
z^{\prime }&=6 x+4 y+3 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
x^{\prime }&=x-3 y \\
y^{\prime }&=3 x+7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=2 x+5 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
x^{\prime }&=7 x+y \\
y^{\prime }&=-4 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
z^{\prime }&=z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
x^{\prime }&=2 x+y-z \\
y^{\prime }&=-x+2 z \\
z^{\prime }&=-x-2 y+4 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
4.196 |
|
| \begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.356 |
|
| \begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
y \left (0\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.823 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
132.826 |
|
| \begin{align*}
y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
41.976 |
|
| \begin{align*}
y^{\prime }&=2 \sqrt {y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.723 |
|
| \begin{align*}
z^{\prime \prime }+3 z^{\prime }+2 z&=24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.694 |
|
| \begin{align*}
y^{\prime }&=x^{2}+y^{2}-1 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
82.563 |
|
| \begin{align*}
y^{\prime }&=2 y \left (x \sqrt {y}-1\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_Bernoulli] |
✓ |
✓ |
✓ |
✗ |
1.610 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
52.467 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } y&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
189.388 |
|
| \begin{align*}
y^{\prime }-y^{2}-x -x^{2}&=0 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
7.783 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.563 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -2 x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -3 x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.636 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{3}+2&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.707 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{4}-6&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.670 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24&=0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.698 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x^{3}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.677 |
|
| \begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.069 |
|
| \begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
1.395 |
|
| \begin{align*}
y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
1.467 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.173 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{2}-1&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.168 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{2}-2&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-y x -x^{2}-4&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}+1&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y x -x^{3}-x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.179 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y x -x^{3}+2&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.175 |
|