2.2.98 Problems 9701 to 9800

Table 2.209: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

9701

\begin{align*} x^{\prime }&=5 x+y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

system_of_ODEs

0.520

9702

\begin{align*} x^{\prime }&=4 x+5 y \\ y^{\prime }&=-2 x+6 y \\ \end{align*}

system_of_ODEs

0.543

9703

\begin{align*} x^{\prime }&=4 x-5 y \\ y^{\prime }&=5 x-4 y \\ \end{align*}

system_of_ODEs

0.450

9704

\begin{align*} x^{\prime }&=x-8 y \\ y^{\prime }&=x-3 y \\ \end{align*}

system_of_ODEs

0.530

9705

\begin{align*} x^{\prime }&=z \\ y^{\prime }&=-z \\ z^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.560

9706

\begin{align*} x^{\prime }&=2 x+y+2 z \\ y^{\prime }&=3 x+6 z \\ z^{\prime }&=-4 x-3 z \\ \end{align*}

system_of_ODEs

1.047

9707

\begin{align*} x^{\prime }&=x-12 y-14 z \\ y^{\prime }&=x+2 y-3 z \\ z^{\prime }&=x+y-2 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 6 \\ z \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.886

9708

\begin{align*} x^{\prime }&=2 x+3 y-7 \\ y^{\prime }&=-x-2 y+5 \\ \end{align*}

system_of_ODEs

0.649

9709

\begin{align*} x^{\prime }&=5 x+9 y+2 \\ y^{\prime }&=-x+11 y+6 \\ \end{align*}

system_of_ODEs

0.569

9710

\begin{align*} -y^{2}+x^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

[_separable]

0.136

9711

\begin{align*} x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \\ \end{align*}

[_quadrature]

0.176

9712

\begin{align*} x^{2} {y^{\prime }}^{2}-5 x y^{\prime } y+6 y^{2}&=0 \\ \end{align*}

[_separable]

0.141

9713

\begin{align*} x^{2} {y^{\prime }}^{2}+y^{\prime } x -y^{2}-y&=0 \\ \end{align*}

[_separable]

0.147

9714

\begin{align*} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_quadrature]

0.205

9715

\begin{align*} {y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y&=0 \\ \end{align*}

[_quadrature]

0.185

9716

\begin{align*} x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[_quadrature]

0.149

9717

\begin{align*} {y^{\prime }}^{2}-y^{2} x^{2}&=0 \\ \end{align*}

[_separable]

0.152

9718

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.757

9719

\begin{align*} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_quadrature]

0.151

9720

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3}&=0 \\ \end{align*}

[_separable]

0.179

9721

\begin{align*} \left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y&=0 \\ \end{align*}

[_quadrature]

4.296

9722

\begin{align*} \left (x -y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.786

9723

\begin{align*} x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \\ \end{align*}

[_quadrature]

0.296

9724

\begin{align*} \left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2}&=4 y^{2} x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.707

9725

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+y x -x^{2}\right ) y^{\prime }+y \left (y-x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.506

9726

\begin{align*} x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right )&=y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.543

9727

\begin{align*} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x&=0 \\ \end{align*}

[_quadrature]

0.254

9728

\begin{align*} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

0.195

9729

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.773

9730

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.599

9731

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.813

9732

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.231

9733

\begin{align*} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.395

9734

\begin{align*} 4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.596

9735

\begin{align*} 4 y^{3} {y^{\prime }}^{2}+4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.040

9736

\begin{align*} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y&=0 \\ \end{align*}

[_dAlembert]

6.063

9737

\begin{align*} y^{4} {y^{\prime }}^{3}-6 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.407

9738

\begin{align*} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.259

9739

\begin{align*} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.358

9740

\begin{align*} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.437

9741

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.207

9742

\begin{align*} y&=y^{\prime } x +k {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.284

9743

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.635

9744

\begin{align*} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.628

9745

\begin{align*} 4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.747

9746

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.592

9747

\begin{align*} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.319

9748

\begin{align*} y^{\prime } \left (y^{\prime } x -y+k \right )+a&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.313

9749

\begin{align*} x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.591

9750

\begin{align*} y&=x^{6} {y^{\prime }}^{3}-y^{\prime } x \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.608

9751

\begin{align*} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.685

9752

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.693

9753

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.602

9754

\begin{align*} 2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.845

9755

\begin{align*} {y^{\prime }}^{3}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.387

9756

\begin{align*} 4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.927

9757

\begin{align*} {y^{\prime }}^{3}-y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.593

9758

\begin{align*} 5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.646

9759

\begin{align*} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[_rational, _dAlembert]

2.646

9760

\begin{align*} 5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.658

9761

\begin{align*} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.649

9762

\begin{align*} y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.125

9763

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.059

9764

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.488

9765

\begin{align*} x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x&=0 \\ y \left (2\right ) &= 5 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.415

9766

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.532

9767

\begin{align*} y^{2} y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.510

9768

\begin{align*} \left (1+y\right ) y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.481

9769

\begin{align*} 2 a y^{\prime \prime }+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.582

9770

\begin{align*} y^{\prime \prime } x&=y^{\prime }+x^{5} \\ y \left (1\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.202

9771

\begin{align*} y^{\prime \prime } x +y^{\prime }+x&=0 \\ y \left (2\right ) &= -1 \\ y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.277

9772

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.345

9773

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.879

9774

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.548

9775

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.718

9776

\begin{align*} \cos \left (x \right ) y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.987

9777

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{2} \\ y \left (2\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.430

9778

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.435

9779

\begin{align*} y^{\prime \prime }&=-{\mathrm e}^{-2 y} \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.756

9780

\begin{align*} y^{\prime \prime }&=-{\mathrm e}^{-2 y} \\ y \left (3\right ) &= 0 \\ y^{\prime }\left (3\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.232

9781

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

65.632

9782

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

47.704

9783

\begin{align*} -x^{2} y^{\prime }+x^{3} y^{\prime \prime }&=-x^{2}+3 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.722

9784

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.575

9785

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.398

9786

\begin{align*} 2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.623

9787

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.352

9788

\begin{align*} y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.503

9789

\begin{align*} y^{\prime \prime }&=\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.457

9790

\begin{align*} y y^{\prime \prime }&={y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.346

9791

\begin{align*} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

17.330

9792

\begin{align*} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2}&=\left (1+{y^{\prime }}^{2}\right )^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.223

9793

\begin{align*} x^{2} y^{\prime \prime }&=y^{\prime } \left (2 x -y^{\prime }\right ) \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.546

9794

\begin{align*} x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

0.406

9795

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.597

9796

\begin{align*} x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.553

9797

\begin{align*} y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1.395

9798

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2}&=0 \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.152

9799

\begin{align*} y^{\prime }-y^{\prime \prime } x +{y^{\prime \prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.378

9800

\begin{align*} {y^{\prime \prime }}^{3}&=12 y^{\prime } \left (-2 y^{\prime }+y^{\prime \prime } x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.670