2.2.95 Problems 9401 to 9500

Table 2.203: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

9401

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.526

9402

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.102

9403

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.177

9404

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.693

9405

\begin{align*} 4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.839

9406

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.694

9407

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.875

9408

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.635

9409

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[[_2nd_order, _with_linear_symmetries]]

0.601

9410

\begin{align*} 3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.593

9411

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

2.111

9412

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.724

9413

\begin{align*} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Jacobi]

0.969

9414

\begin{align*} \left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (5 x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.669

9415

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=-1\).

[[_2nd_order, _with_linear_symmetries]]

0.977

9416

\begin{align*} \left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.938

9417

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\ \end{align*}
Series expansion around \(x=1\).

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.343

9418

\begin{align*} \left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.196

9419

\begin{align*} y^{\prime \prime }+2 y x&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.376

9420

\begin{align*} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.374

9421

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{3}-x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

9422

\begin{align*} 2 y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.409

9423

\begin{align*} \left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.594

9424

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.382

9425

\begin{align*} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.493

9426

\begin{align*} \left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.561

9427

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.729

9428

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.631

9429

\begin{align*} y^{\prime \prime } x -4 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Lienard]

0.677

9430

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.674

9431

\begin{align*} 2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.862

9432

\begin{align*} y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.708

9433

\begin{align*} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.640

9434

\begin{align*} y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.638

9435

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.029

9436

\begin{align*} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.027

9437

\begin{align*} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.026

9438

\begin{align*} x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_3rd_order, _with_linear_symmetries]]

0.029

9439

\begin{align*} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_Emden, _Fowler]]

0.688

9440

\begin{align*} 9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[[_2nd_order, _with_linear_symmetries]]

1.191

9441

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=\infty \).

[_Gegenbauer]

1.136

9442

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=5 \,{\mathrm e}^{3 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.245

9443

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.175

9444

\begin{align*} y^{\prime \prime }-y&=t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.170

9445

\begin{align*} L i^{\prime }+R i&=E_{0} \operatorname {Heaviside}\left (t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.176

9446

\begin{align*} L i^{\prime }+R i&=E_{0} \delta \left (t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.099

9447

\begin{align*} L i^{\prime }+R i&=E_{0} \sin \left (\omega t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.213

9448

\begin{align*} y^{\prime \prime }+3 y^{\prime }-5 y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.230

9449

\begin{align*} y^{\prime \prime }+3 y^{\prime }-2 y&=-6 \,{\mathrm e}^{\pi -t} \\ y \left (\pi \right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.504

9450

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.204

9451

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.240

9452

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.136

9453

\begin{align*} y^{\prime \prime }+3 y^{\prime }+3 y&=2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.218

9454

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=t \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.247

9455

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&={\mathrm e}^{2 t} t \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.200

9456

\begin{align*} i^{\prime \prime }+2 i^{\prime }+3 i&=\left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \\ i \left (0\right ) &= 8 \\ i^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

7.818

9457

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=3 x+y \\ \end{align*}

system_of_ODEs

0.342

9458

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=3 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 5 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.357

9459

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=3 x+2 y \\ \end{align*}

system_of_ODEs

0.369

9460

\begin{align*} x^{\prime }&=x+2 y+t -1 \\ y^{\prime }&=3 x+2 y-5 t -2 \\ \end{align*}

system_of_ODEs

0.613

9461

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.256

9462

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=y \\ \end{align*}

system_of_ODEs

0.215

9463

\begin{align*} x^{\prime }&=-3 x+4 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

system_of_ODEs

0.345

9464

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=5 x+2 y \\ \end{align*}

system_of_ODEs

0.522

9465

\begin{align*} x^{\prime }&=5 x+4 y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.319

9466

\begin{align*} x^{\prime }&=4 x-3 y \\ y^{\prime }&=8 x-6 y \\ \end{align*}

system_of_ODEs

0.370

9467

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=3 y \\ \end{align*}

system_of_ODEs

0.286

9468

\begin{align*} x^{\prime }&=-4 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

system_of_ODEs

0.296

9469

\begin{align*} x^{\prime }&=7 x+6 y \\ y^{\prime }&=2 x+6 y \\ \end{align*}

system_of_ODEs

0.383

9470

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=4 x+5 y \\ \end{align*}

system_of_ODEs

0.523

9471

\begin{align*} x^{\prime }&=x+y-5 t +2 \\ y^{\prime }&=4 x-2 y-8 t -8 \\ \end{align*}

system_of_ODEs

0.619

9472

\begin{align*} x^{\prime }&=3 x-4 y \\ y^{\prime }&=4 x-7 y \\ \end{align*}

system_of_ODEs

0.418

9473

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=4 x+y \\ \end{align*}

system_of_ODEs

0.368

9474

\begin{align*} x^{\prime }&=-3 x+\sqrt {2}\, y \\ y^{\prime }&=\sqrt {2}\, x-2 y \\ \end{align*}

system_of_ODEs

0.415

9475

\begin{align*} x^{\prime }&=5 x+3 y \\ y^{\prime }&=-6 x-4 y \\ \end{align*}

system_of_ODEs

0.364

9476

\begin{align*} x^{\prime }&=3 x+2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}

system_of_ODEs

0.306

9477

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.369

9478

\begin{align*} x^{\prime }&=3 x-5 y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.536

9479

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=-4 x+y \\ \end{align*}

system_of_ODEs

0.459

9480

\begin{align*} x^{\prime }&=3 x+2 y+z \\ y^{\prime }&=-2 x-y+3 z \\ z^{\prime }&=x+y+z \\ \end{align*}

system_of_ODEs

0.716

9481

\begin{align*} x^{\prime }&=-x+y-z \\ y^{\prime }&=2 x-y-4 z \\ z^{\prime }&=3 x-y+z \\ \end{align*}

system_of_ODEs

11.829

9482

\begin{align*} x^{\prime }&=x+2 y-4 t +1 \\ y^{\prime }&=-x+2 y+3 t +4 \\ \end{align*}

system_of_ODEs

1.477

9483

\begin{align*} x^{\prime }&=-2 x+y-t +3 \\ y^{\prime }&=x+4 y+t -2 \\ \end{align*}

system_of_ODEs

1.750

9484

\begin{align*} x^{\prime }&=-4 x+y-t +3 \\ y^{\prime }&=-x-5 y+t +1 \\ \end{align*}

system_of_ODEs

1.406

9485

\begin{align*} x^{\prime }&=x y+1 \\ y^{\prime }&=-x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.028

9486

\begin{align*} x^{\prime }&=t y+1 \\ y^{\prime }&=-t x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.026

9487

\begin{align*} y^{\prime }&=y^{2}-x \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_Riccati, _special]]

0.182

9488

\begin{align*} y^{\prime }&=y^{2}-x \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

4.138

9489

\begin{align*} y^{\prime }-2 y&=x^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

[[_linear, ‘class A‘]]

0.368

9490

\begin{align*} y^{\prime }-2 y&=x^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_linear, ‘class A‘]]

1.807

9491

\begin{align*} y^{\prime }&=y+x \,{\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.681

9492

\begin{align*} y^{\prime }&=y+x \,{\mathrm e}^{y} \\ y \left (0\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.764

9493

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.282

9494

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.787

9495

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.286

9496

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.948

9497

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.292

9498

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.739

9499

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.352

9500

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.878