| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}}&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✗ |
✗ |
✓ |
✗ |
0.102 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.177 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.693 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.601 |
|
| \begin{align*}
3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.593 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Bessel] |
✓ |
✓ |
✓ |
✓ |
2.111 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Jacobi] |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| \begin{align*}
\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (5 x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.669 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y&=0 \\
\end{align*} Series expansion around \(x=-1\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.977 |
|
| \begin{align*}
\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=3\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.938 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\
\end{align*} Series expansion around \(x=1\). | [_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] | ✓ | ✓ | ✓ | ✓ | 1.343 |
|
| \begin{align*}
\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.196 |
|
| \begin{align*}
y^{\prime \prime }+2 y x&=x^{2} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{3}-x \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.415 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.561 |
|
| \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\left (2+x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.729 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.631 |
|
| \begin{align*}
y^{\prime \prime } x -4 y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Lienard] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.674 |
|
| \begin{align*}
2 y^{\prime \prime } x +\left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| \begin{align*}
y^{\prime \prime } x -\left (x -1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Laguerre] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.640 |
|
| \begin{align*}
y^{\prime \prime } x +\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). | [[_3rd_order, _with_linear_symmetries]] | ✗ | ✓ | ✓ | ✗ | 0.027 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.026 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.029 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| \begin{align*}
9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.191 |
|
| \begin{align*}
p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=\infty \). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
1.136 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=5 \,{\mathrm e}^{3 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime \prime }-y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \operatorname {Heaviside}\left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
0.176 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \delta \left (t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.099 |
|
| \begin{align*}
L i^{\prime }+R i&=E_{0} \sin \left (\omega t \right ) \\
i \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-5 y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=-6 \,{\mathrm e}^{\pi -t} \\
y \left (\pi \right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 4 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.136 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+3 y&=2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=t \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&={\mathrm e}^{2 t} t \\
\end{align*} Using Laplace transform method. | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.200 |
|
| \begin{align*}
i^{\prime \prime }+2 i^{\prime }+3 i&=\left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \\
i \left (0\right ) &= 8 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✗ |
✓ |
✗ |
7.818 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=3 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 5 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=3 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
x^{\prime }&=x+2 y+t -1 \\
y^{\prime }&=3 x+2 y-5 t -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
x^{\prime }&=-3 x+4 y \\
y^{\prime }&=-2 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=5 x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| \begin{align*}
x^{\prime }&=5 x+4 y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
x^{\prime }&=4 x-3 y \\
y^{\prime }&=8 x-6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
x^{\prime }&=-4 x-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
x^{\prime }&=7 x+6 y \\
y^{\prime }&=2 x+6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
x^{\prime }&=x-2 y \\
y^{\prime }&=4 x+5 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
x^{\prime }&=x+y-5 t +2 \\
y^{\prime }&=4 x-2 y-8 t -8 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
x^{\prime }&=3 x-4 y \\
y^{\prime }&=4 x-7 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=4 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x^{\prime }&=-3 x+\sqrt {2}\, y \\
y^{\prime }&=\sqrt {2}\, x-2 y \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.415 |
|
| \begin{align*}
x^{\prime }&=5 x+3 y \\
y^{\prime }&=-6 x-4 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y \\
y^{\prime }&=-2 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
x^{\prime }&=3 x-5 y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.536 |
|
| \begin{align*}
x^{\prime }&=x+2 y \\
y^{\prime }&=-4 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
x^{\prime }&=3 x+2 y+z \\
y^{\prime }&=-2 x-y+3 z \\
z^{\prime }&=x+y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
x^{\prime }&=-x+y-z \\
y^{\prime }&=2 x-y-4 z \\
z^{\prime }&=3 x-y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
11.829 |
|
| \begin{align*}
x^{\prime }&=x+2 y-4 t +1 \\
y^{\prime }&=-x+2 y+3 t +4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| \begin{align*}
x^{\prime }&=-2 x+y-t +3 \\
y^{\prime }&=x+4 y+t -2 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.750 |
|
| \begin{align*}
x^{\prime }&=-4 x+y-t +3 \\
y^{\prime }&=-x-5 y+t +1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.406 |
|
| \begin{align*}
x^{\prime }&=x y+1 \\
y^{\prime }&=-x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| \begin{align*}
x^{\prime }&=t y+1 \\
y^{\prime }&=-t x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.026 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
y^{\prime }&=y^{2}-x \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
4.138 |
|
| \begin{align*}
y^{\prime }-2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} Series expansion around \(x=1\). |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime }-2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.807 |
|
| \begin{align*}
y^{\prime }&=y+x \,{\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[‘y=_G(x,y’)‘] |
✓ |
✓ |
✗ |
✓ |
0.681 |
|
| \begin{align*}
y^{\prime }&=y+x \,{\mathrm e}^{y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
5.764 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.787 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.878 |
|