2.2.46 Problem 46
Internal
problem
ID
[10457]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
46
Date
solved
:
Monday, January 26, 2026 at 10:25:38 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
2.2.46.1 second order euler ode
0.086 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering second order euler ode solverThis is Euler second order ODE. Let the solution be \(y = x^r\), then \(y'=r x^{r-1}\)
and \(y''=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives \[ x^{2}(r(r-1))x^{r-2}-4 x r x^{r-1}+6 x^{r} = 0 \]
Simplifying gives \[ r \left (r -1\right )x^{r}-4 r\,x^{r}+6 x^{r} = 0 \]
Since \(x^{r}\neq 0\) then
dividing throughout by \(x^{r}\) gives \[ r \left (r -1\right )-4 r+6 = 0 \]
Or \[ r^{2}-5 r +6 = 0 \tag {1} \]
Equation (1) is the characteristic equation. Its roots
determine the form of the general solution. Using the quadratic equation the roots are
\begin{align*} r_1 &= 2\\ r_2 &= 3 \end{align*}
Since the roots are real and distinct, then the general solution is
\[ y= c_1 y_1 + c_2 y_2 \]
Where \(y_1 = x^{r_1}\) and \(y_2 = x^{r_2} \). Hence
\[ y = c_2 \,x^{3}+c_1 \,x^{2} \]
Summary of solutions found
\begin{align*}
y &= c_2 \,x^{3}+c_1 \,x^{2} \\
\end{align*}
2.2.46.2 second order ode solved by an integrating factor
0.099 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering second order ode solved by an integrating factor solverThe ode satisfies this form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+\frac {\left (p \left (x \right )^{2}+p^{\prime }\left (x \right )\right ) y}{2} = f \left (x \right ) \]
Where \( p(x) = -\frac {4}{x}\). Therefore, there is an integrating factor given by \begin{align*} M(x) &= e^{\frac {1}{2} \int p \, dx} \\ &= e^{ \int -\frac {4}{x} \, dx} \\ &= \frac {1}{x^{2}} \end{align*}
Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a
complete differential
\begin{align*}
\left ( M(x) y \right )'' &= 0 \\
\left ( \frac {y}{x^{2}} \right )'' &= 0 \\
\end{align*}
Integrating once gives \[ \left ( \frac {y}{x^{2}} \right )' = c_1 \]
Integrating again gives \[ \left ( \frac {y}{x^{2}} \right ) = c_1 x +c_2 \]
Hence the solution is \begin{align*}
y &= \frac {c_1 x +c_2}{\frac {1}{x^{2}}} \\
\end{align*}
Or
\[
y = c_1 \,x^{3}+c_2 \,x^{2}
\]
Summary of solutions found
\begin{align*}
y &= c_1 \,x^{3}+c_2 \,x^{2} \\
\end{align*}
2.2.46.3 second order change of variable on x method 2
0.365 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering second order change of variable on \(x\) method 2 solverIn normal form the ode
\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0\tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=-\frac {4}{x}\\ q \left (x \right )&=\frac {6}{x^{2}} \end{align*}
Applying change of variables \(\tau = g \left (x \right )\) to (2) gives
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}
Where \(\tau \) is the new independent variable, and
\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}
Let \(p_{1} = 0\). Eq (4) simplifies to
\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}
This ode is solved resulting in
\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (x \right )d x}d x\\ &= \int {\mathrm e}^{-\int -\frac {4}{x}d x}d x\\ &= \int e^{4 \ln \left (x \right )} \,dx\\ &= \int x^{4}d x\\ &= \frac {x^{5}}{5}\tag {6} \end{align*}
Using (6) to evaluate \(q_{1}\) from (5) gives
\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {\frac {6}{x^{2}}}{x^{8}}\\ &= \frac {6}{x^{10}}\tag {7} \end{align*}
Substituting the above in (3) and noting that now \(p_{1} = 0\) results in
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+\frac {6 y \left (\tau \right )}{x^{10}}&=0 \\ \end{align*}
But in terms of \(\tau \)
\begin{align*} \frac {6}{x^{10}}&=\frac {6}{25 \tau ^{2}} \end{align*}
Hence the above ode becomes
\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+\frac {6 y \left (\tau \right )}{25 \tau ^{2}}&=0 \end{align*}
The above ode is now solved for \(y \left (\tau \right )\). Entering second order euler ode solverThis is Euler second order
ODE. Let the solution be \(y \left (\tau \right ) = \tau ^r\), then \(y'=r \tau ^{r-1}\) and \(y''=r(r-1) \tau ^{r-2}\). Substituting these back into the given ODE gives
\[ 25 \tau ^{2}(r(r-1))\tau ^{r-2}+0 r \tau ^{r-1}+6 \tau ^{r} = 0 \]
Simplifying gives \[ 25 r \left (r -1\right )\tau ^{r}+0\,\tau ^{r}+6 \tau ^{r} = 0 \]
Since \(\tau ^{r}\neq 0\) then dividing throughout by \(\tau ^{r}\) gives \[ 25 r \left (r -1\right )+0+6 = 0 \]
Or \[ 25 r^{2}-25 r +6 = 0 \tag {1} \]
Equation (1) is the characteristic
equation. Its roots determine the form of the general solution. Using the quadratic equation the
roots are \begin{align*} r_1 &= {\frac {2}{5}}\\ r_2 &= {\frac {3}{5}} \end{align*}
Since the roots are real and distinct, then the general solution is
\[ y \left (\tau \right )= c_1 y_1 + c_2 y_2 \]
Where \(y_1 = \tau ^{r_1}\) and \(y_2 = \tau ^{r_2} \). Hence \[ y \left (\tau \right ) = c_1 \,\tau ^{{2}/{5}}+c_2 \,\tau ^{{3}/{5}} \]
The above
solution is now transformed back to \(y\) using (6) which results in \[
y = \frac {c_1 5^{{3}/{5}} \left (x^{5}\right )^{{2}/{5}}}{5}+\frac {c_2 5^{{2}/{5}} \left (x^{5}\right )^{{3}/{5}}}{5}
\]
Summary of solutions found
\begin{align*}
y &= \frac {c_1 5^{{3}/{5}} \left (x^{5}\right )^{{2}/{5}}}{5}+\frac {c_2 5^{{2}/{5}} \left (x^{5}\right )^{{3}/{5}}}{5} \\
\end{align*}
2.2.46.4 second order change of variable on y method 1
0.183 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering second order change of variable on \(y\) method 1 solverIn normal form the given ode is
written as \begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=-\frac {4}{x}\\ q \left (x \right )&=\frac {6}{x^{2}} \end{align*}
Calculating the Liouville ode invariant \(Q\) given by
\begin{align*} Q &= q - \frac {p'}{2}- \frac {p^2}{4} \\ &= \frac {6}{x^{2}} - \frac {\left (-\frac {4}{x}\right )'}{2}- \frac {\left (-\frac {4}{x}\right )^2}{4} \\ &= \frac {6}{x^{2}} - \frac {\left (\frac {4}{x^{2}}\right )}{2}- \frac {\left (\frac {16}{x^{2}}\right )}{4} \\ &= \frac {6}{x^{2}} - \left (\frac {2}{x^{2}}\right )-\frac {4}{x^{2}}\\ &= 0 \end{align*}
Since the Liouville ode invariant does not depend on the independent variable \(x\) then the
transformation
\begin{align*} y = v \left (x \right ) z \left (x \right )\tag {3} \end{align*}
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z \left (x \right )\) is given by
\begin{align*} z \left (x \right )&={\mathrm e}^{-\int \frac {p \left (x \right )}{2}d x}\\ &= e^{-\int \frac {-\frac {4}{x}}{2} }\\ &= x^{2}\tag {5} \end{align*}
Hence (3) becomes
\begin{align*} y = v \left (x \right ) x^{2}\tag {4} \end{align*}
Applying this change of variable to the original ode results in
\begin{align*} x^{4} v^{\prime \prime }\left (x \right ) = 0 \end{align*}
Which is now solved for \(v \left (x \right )\).
The above ode simplifies to
\begin{align*} v^{\prime \prime }\left (x \right ) = 0 \end{align*}
Entering second order ode quadrature solverIntegrating twice gives the solution
\[ v \left (x \right )= c_3 x + c_4 \]
Now that \(v \left (x \right )\) is
known, then \begin{align*} y&= v \left (x \right ) z \left (x \right )\\ &= \left (c_3 x +c_4\right ) \left (z \left (x \right )\right )\tag {7} \end{align*}
But from (5)
\begin{align*} z \left (x \right )&= x^{2} \end{align*}
Hence (7) becomes
\begin{align*} y = \left (c_3 x +c_4 \right ) x^{2} \end{align*}
Summary of solutions found
\begin{align*}
y &= \left (c_3 x +c_4 \right ) x^{2} \\
\end{align*}
2.2.46.5 second order change of variable on y method 2
0.408 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering second order change of variable on \(y\) method 2 solverIn normal form the ode
\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0\tag {1} \end{align*}
Becomes
\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=-\frac {4}{x}\\ q \left (x \right )&=\frac {6}{x^{2}} \end{align*}
Applying change of variables on the depndent variable \(y = v \left (x \right ) x^{n}\) to (2) gives the following ode where the
dependent variables is \(v \left (x \right )\) and not \(y\).
\begin{align*} v^{\prime \prime }\left (x \right )+\left (\frac {2 n}{x}+p \right ) v^{\prime }\left (x \right )+\left (\frac {n \left (n -1\right )}{x^{2}}+\frac {n p}{x}+q \right ) v \left (x \right )&=0 \tag {3} \end{align*}
Let the coefficient of \(v \left (x \right )\) above be zero. Hence
\begin{align*} \frac {n \left (n -1\right )}{x^{2}}+\frac {n p}{x}+q&=0 \tag {4} \end{align*}
Substituting the earlier values found for \(p \left (x \right )\) and \(q \left (x \right )\) into (4) gives
\begin{align*} \frac {n \left (n -1\right )}{x^{2}}-\frac {4 n}{x^{2}}+\frac {6}{x^{2}}&=0 \tag {5} \end{align*}
Solving (5) for \(n\) gives
\begin{align*} n&=3 \tag {6} \end{align*}
Substituting this value in (3) gives
\begin{align*} v^{\prime \prime }\left (x \right )+\frac {2 v^{\prime }\left (x \right )}{x}&=0 \\ v^{\prime \prime }\left (x \right )+\frac {2 v^{\prime }\left (x \right )}{x}&=0 \tag {7} \\ \end{align*}
Using the substitution
\begin{align*} u \left (x \right ) = v^{\prime }\left (x \right ) \end{align*}
Then (7) becomes
\begin{align*} u^{\prime }\left (x \right )+\frac {2 u \left (x \right )}{x} = 0 \tag {8} \\ \end{align*}
The above is now solved for \(u \left (x \right )\). Entering first order ode linear solverIn canonical form a linear first
order is
\begin{align*} u^{\prime }\left (x \right ) + q(x)u \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\frac {2}{x}\\ p(x) &=0 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \frac {2}{x}d x}\\ &= x^{2} \end{align*}
The ode becomes
\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \mu u &= 0 \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (u \,x^{2}\right ) &= 0 \end{align*}
Integrating gives
\begin{align*} u \,x^{2}&= \int {0 \,dx} + c_1 \\ &=c_1 \end{align*}
Dividing throughout by the integrating factor \(x^{2}\) gives the final solution
\[ u \left (x \right ) = \frac {c_1}{x^{2}} \]
Now that \(u \left (x \right )\) is known, then
\begin{align*} v^{\prime }\left (x \right )&= u \left (x \right )\\ v \left (x \right )&= \int u \left (x \right )d x +c_2\\ &= -\frac {c_1}{x}+c_2 \end{align*}
Hence
\begin{align*} y&= v \left (x \right ) x^{n}\\ &= \left (-\frac {c_1}{x}+c_2 \right ) x^{3}\\ &= \left (c_2 x -c_1 \right ) x^{2}\\ \end{align*}
Summary of solutions found
\begin{align*}
y &= \left (-\frac {c_1}{x}+c_2 \right ) x^{3} \\
\end{align*}
2.2.46.6 second order kovacic
0.082 (sec)
\begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\
\end{align*}
Entering kovacic solverWriting the ode as \begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= x^{2} \\ B &= -4 x\tag {3} \\ C &= 6 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {0}{1}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= 0\\ t &= 1 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= 0 \tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these
cases.
| | |
| Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
| | |
| 1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
| | |
|
2
|
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
| | |
| 3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
| | |
Table 2.49: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - -\infty \\ &= \infty \end{align*}
There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole larger
than \(2\) and the order at \(\infty \) is \(infinity\) then the necessary conditions for case one are met. Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = 0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for
transformed ode \(z''=r z\) as one solution is
\[ z_1(x) = 1 \]
Using the above, the solution for the original ode can now be
found. The first solution to the original ode in \(y\) is found from \begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {-4 x}{x^{2}} \,dx} \\
&= z_1 e^{2 \ln \left (x \right )} \\
&= z_1 \left (x^{2}\right ) \\
\end{align*}
Which simplifies to \[
y_1 = x^{2}
\]
The second
solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives \begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {-4 x}{x^{2}} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{4 \ln \left (x \right )}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left (x\right ) \\
\end{align*}
Therefore the
solution is
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
&= c_1 \left (x^{2}\right ) + c_2 \left (x^{2}\left (x\right )\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= c_2 \,x^{3}+c_1 \,x^{2} \\
\end{align*}
2.2.46.7 ✓ Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=x^2*diff(diff(y(x),x),x)-4*diff(y(x),x)*x+6*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = x^{2} \left (c_2 x +c_1 \right )
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )-4 x \left (\frac {d}{d x}y \left (x \right )\right )+6 y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right ) \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=-\frac {6 y \left (x \right )}{x^{2}}+\frac {4 \left (\frac {d}{d x}y \left (x \right )\right )}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (x \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )-\frac {4 \left (\frac {d}{d x}y \left (x \right )\right )}{x}+\frac {6 y \left (x \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d^{2}}{d x^{2}}y \left (x \right )\right )-4 x \left (\frac {d}{d x}y \left (x \right )\right )+6 y \left (x \right )=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (\frac {d}{d t}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) \left (\frac {d}{d x}t \left (x \right )\right )^{2}+\left (\frac {d^{2}}{d x^{2}}t \left (x \right )\right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d x^{2}}y \left (x \right )=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right )-4 \frac {d}{d t}y \left (t \right )+6 y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {d^{2}}{d t^{2}}y \left (t \right )-5 \frac {d}{d t}y \left (t \right )+6 y \left (t \right )=0 \\ \bullet & {} & \textrm {Characteristic polynomial of ODE}\hspace {3pt} \\ {} & {} & r^{2}-5 r +6=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \left (r -2\right ) \left (r -3\right )=0 \\ \bullet & {} & \textrm {Roots of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =\left (2, 3\right ) \\ \bullet & {} & \textrm {1st solution of the ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{2 t} \\ \bullet & {} & \textrm {2nd solution of the ODE}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )={\mathrm e}^{3 t} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} y_{1}\left (t \right )+\mathit {C2} y_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} \,{\mathrm e}^{2 t}+\mathit {C2} \,{\mathrm e}^{3 t} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y \left (x \right )=\mathit {C2} \,x^{3}+\mathit {C1} \,x^{2} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (x \right )=x^{2} \left (\mathit {C2} x +\mathit {C1} \right ) \end {array} \]
2.2.46.8 ✓ Mathematica. Time used: 0.008 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to x^2 (c_2 x+c_1) \end{align*}
2.2.46.9 ✓ Sympy. Time used: 0.159 (sec). Leaf size: 10
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = x^{2} \left (C_{1} + C_{2} x\right )
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('factorable', 'nth_linear_euler_eq_homogeneous', '2nd_linear_bessel', '2nd_power_series_regular')