2.2.20 Problem 21

2.2.20.1 second order change of variable on x method 2
2.2.20.2 Maple
2.2.20.3 Mathematica
2.2.20.4 Sympy

Internal problem ID [10431]
Book : Second order enumerated odes
Section : section 2
Problem number : 21
Date solved : Monday, January 26, 2026 at 10:21:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

2.2.20.1 second order change of variable on x method 2

0.467 (sec)

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2}&=0 \\ \end{align*}
Entering second order change of variable on \(x\) method 2 solverIn normal form the ode
\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0\tag {1} \end{align*}

Becomes

\begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}

Where

\begin{align*} p \left (x \right )&=\cot \left (x \right )\\ q \left (x \right )&=4 \csc \left (x \right )^{2} \end{align*}

Applying change of variables \(\tau = g \left (x \right )\) to (2) gives

\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+p_{1} \left (\frac {d}{d \tau }y \left (\tau \right )\right )+q_{1} y \left (\tau \right )&=0 \tag {3} \end{align*}

Where \(\tau \) is the new independent variable, and

\begin{align*} p_{1} \left (\tau \right ) &=\frac {\tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {4} \\ q_{1} \left (\tau \right ) &=\frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\tag {5} \end{align*}

Let \(p_{1} = 0\). Eq (4) simplifies to

\begin{align*} \tau ^{\prime \prime }\left (x \right )+p \left (x \right ) \tau ^{\prime }\left (x \right )&=0 \end{align*}

This ode is solved resulting in

\begin{align*} \tau &= \int {\mathrm e}^{-\int p \left (x \right )d x}d x\\ &= \int {\mathrm e}^{-\int \cot \left (x \right )d x}d x\\ &= \int e^{-\ln \left (\sin \left (x \right )\right )} \,dx\\ &= \int \csc \left (x \right )d x\\ &= -\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\tag {6} \end{align*}

Using (6) to evaluate \(q_{1}\) from (5) gives

\begin{align*} q_{1} \left (\tau \right ) &= \frac {q \left (x \right )}{{\tau ^{\prime }\left (x \right )}^{2}}\\ &= \frac {4 \csc \left (x \right )^{2}}{\csc \left (x \right )^{2}}\\ &= 4\tag {7} \end{align*}

Substituting the above in (3) and noting that now \(p_{1} = 0\) results in

\begin{align*} \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+q_{1} y \left (\tau \right )&=0 \\ \frac {d^{2}}{d \tau ^{2}}y \left (\tau \right )+4 y \left (\tau \right )&=0 \end{align*}

The above ode is now solved for \(y \left (\tau \right )\).Entering second order linear constant coefficient ode solver

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

\[ A y''(\tau ) + B y'(\tau ) + C y(\tau ) = 0 \]
Where in the above \(A=1, B=0, C=4\). Let the solution be \(y \left (\tau \right )=e^{\lambda \tau }\). Substituting this into the ODE gives
\[ \lambda ^{2} {\mathrm e}^{\tau \lambda }+4 \,{\mathrm e}^{\tau \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda \tau }\) gives
\[ \lambda ^{2}+4 = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula the roots are
\[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=0, C=4\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (4\right )}\\ &= \pm 2 i \end{align*}

Hence

\begin{align*} \lambda _1 &= + 2 i\\ \lambda _2 &= - 2 i \end{align*}

Which simplifies to

\begin{align*} \lambda _1 &= 2 i \\ \lambda _2 &= -2 i \\ \end{align*}
Since the roots are complex conjugate of each others, then let the roots be
\[ \lambda _{1,2} = \alpha \pm i \beta \]
Where \(\alpha =0\) and \(\beta =2\). Therefore the final solution, when using Euler relation, can be written as
\[ y \left (\tau \right ) = e^{\alpha \tau } \left ( c_1 \cos (\beta \tau ) + c_2 \sin (\beta \tau ) \right ) \]
Which becomes
\[ y \left (\tau \right ) = e^{0}\left (c_1 \cos \left (2 \tau \right )+c_2 \sin \left (2 \tau \right )\right ) \]
Or
\[ y \left (\tau \right ) = c_1 \cos \left (2 \tau \right )+c_2 \sin \left (2 \tau \right ) \]
The above solution is now transformed back to \(y\) using (6) which results in
\[ y = c_1 \cos \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right )-c_2 \sin \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right ) \]

Summary of solutions found

\begin{align*} y &= c_1 \cos \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right )-c_2 \sin \left (2 \ln \left (\csc \left (x \right )+\cot \left (x \right )\right )\right ) \\ \end{align*}
2.2.20.2 Maple. Time used: 0.002 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+cot(x)*diff(y(x),x)+4*csc(x)^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (\csc \left (x \right )+\cot \left (x \right )\right )^{-2 i}+c_2 \left (\csc \left (x \right )+\cot \left (x \right )\right )^{2 i} \]

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a symmetry of the form [xi=0, eta=F(x)] 
<- linear_1 successful
 
2.2.20.3 Mathematica. Time used: 0.03 (sec). Leaf size: 25
ode=D[y[x],{x,2}]+Cot[x]*D[y[x],x]+4*y[x]*Csc[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos (2 \text {arctanh}(\cos (x)))-c_2 \sin (2 \text {arctanh}(\cos (x))) \end{align*}
2.2.20.4 Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x)/sin(x)**2 + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 4*y(x)*tan(x)/sin(x)**2 + tan(x)*Derivative(y(x), (x, 2)) + Deri
 
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0] 
Sympy version 1.14.0
 
classify_ode(ode,func=y(x)) 
 
('factorable',)