2.1.10 Problem 10
Internal
problem
ID
[10369]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
10
Date
solved
:
Thursday, November 27, 2025 at 10:35:31 AM
CAS
classification
:
[[_2nd_order, _quadrature]]
Solved as second order missing y ode
Time used: 0.512 (sec)
Solve
\begin{align*}
{y^{\prime \prime }}^{2}&=x \\
\end{align*}
This is second order ode with missing dependent variable
\(y\). Let
\begin{align*} u(x) &= y^{\prime } \end{align*}
Then
\begin{align*} u'(x) &= y^{\prime \prime } \end{align*}
Hence the ode becomes
\begin{align*} {u^{\prime }\left (x \right )}^{2}-x = 0 \end{align*}
Which is now solved for \(u(x)\) as first order ode.
Solve Multiplying the right side of the ode, which is \(\sqrt {x}\) by \(\frac {x}{u}\) gives
\begin{align*} u^{\prime }\left (x \right ) &= \left (\frac {x}{u}\right ) \sqrt {x}\\ &= \frac {x^{{3}/{2}}}{u}\\ &= F(x,u) \end{align*}
Since \(F \left (x , u\right )\) has \(u\), then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , u\right )\right )\\ &= \frac {3 x^{{3}/{2}}}{2 u}\\ f_u&= u \left (\frac {\partial }{\partial u}F \left (x , u\right )\right )\\ &= -\frac {x^{{3}/{2}}}{u}\\ \alpha &= \frac {f_x}{f_u} \\ &=-{\frac {3}{2}} \end{align*}
Since \(\alpha \) is independent of \(x,u\) then this is Homogeneous type G.
Let
\begin{align*} u&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x^{{3}/{2}}}} \end{align*}
Substituting the above back into \(F(x,u)\) gives
\begin{align*} F \left (z \right ) &=\frac {1}{z} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(u\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (x \right )- c_1 - \int ^{u x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (x \right )-c_1 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}-\frac {1}{z}\right )}d z = 0
\]
Multiplying the right side of the ode, which is
\(-\sqrt {x}\) by
\(\frac {x}{u}\) gives
\begin{align*} u^{\prime }\left (x \right ) &= \left (\frac {x}{u}\right ) -\sqrt {x}\\ &= -\frac {x^{{3}/{2}}}{u}\\ &= F(x,u) \end{align*}
Since \(F \left (x , u\right )\) has \(u\), then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , u\right )\right )\\ &= -\frac {3 x^{{3}/{2}}}{2 u}\\ f_u&= u \left (\frac {\partial }{\partial u}F \left (x , u\right )\right )\\ &= \frac {x^{{3}/{2}}}{u}\\ \alpha &= \frac {f_x}{f_u} \\ &=-{\frac {3}{2}} \end{align*}
Since \(\alpha \) is independent of \(x,u\) then this is Homogeneous type G.
Let
\begin{align*} u&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x^{{3}/{2}}}} \end{align*}
Substituting the above back into \(F(x,u)\) gives
\begin{align*} F \left (z \right ) &=-\frac {1}{z} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(u\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (x \right )- c_1 - \int ^{u x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (x \right )-c_2 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}+\frac {1}{z}\right )}d z = 0
\]
In summary, these are the solution found for
\(y\) \begin{align*}
\ln \left (x \right )-c_1 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}-\frac {1}{z}\right )}d z &= 0 \\
\ln \left (x \right )-c_2 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}+\frac {1}{z}\right )}d z &= 0 \\
\end{align*}
For solution
\(\ln \left (x \right )-c_1 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}-\frac {1}{z}\right )}d z = 0\), since
\(u=y^{\prime }\) then we now have
a new first order ode to solve which is
\begin{align*} \ln \left (x \right )-c_1 +\int _{}^{\frac {y^{\prime }}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}-\frac {1}{z}\right )}d z = 0 \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z -2}d z \right )\, dx}\\ y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z -2}d z \right )d x + c_3 \end{align*}
\begin{align*} y&= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z -2}d z \right )d x +c_3 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z -2}d z \right )d x +c_3 \\
\end{align*}
For solution
\(\ln \left (x \right )-c_2 +\int _{}^{\frac {u \left (x \right )}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}+\frac {1}{z}\right )}d z = 0\), since
\(u=y^{\prime }\) then we now have a new first
order ode to solve which is
\begin{align*} \ln \left (x \right )-c_2 +\int _{}^{\frac {y^{\prime }}{x^{{3}/{2}}}}\frac {1}{z \left (\frac {3}{2}+\frac {1}{z}\right )}d z = 0 \end{align*}
Solve Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {\operatorname {RootOf}\left (-\ln \left (x \right )+c_2 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z +2}d z \right )\, dx}\\ y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_2 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z +2}d z \right )d x + c_4 \end{align*}
\begin{align*} y&= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_2 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z +2}d z \right )d x +c_4 \end{align*}
In summary, these are the solution found for \((y)\)
\begin{align*}
y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_2 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z +2}d z \right )d x +c_4 \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z -2}d z \right )d x +c_3 \\
y &= \int \operatorname {RootOf}\left (-\ln \left (x \right )+c_2 -\int _{}^{\frac {\textit {\_Z}}{x^{{3}/{2}}}}\frac {2}{3 z +2}d z \right )d x +c_4 \\
\end{align*}
✓ Maple. Time used: 0.007 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x)^2 = x;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {4 x^{{5}/{2}}}{15}+c_1 x +c_2 \\
y &= -\frac {4 x^{{5}/{2}}}{15}+c_1 x +c_2 \\
\end{align*}
Maple trace
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each\
resulting ODE.
*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
-------------------
* Tackling next ODE.
*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
✓ Mathematica. Time used: 0.003 (sec). Leaf size: 41
ode=(D[y[x],{x,2}])^2==x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to -\frac {4 x^{5/2}}{15}+c_2 x+c_1\\ y(x)&\to \frac {4 x^{5/2}}{15}+c_2 x+c_1 \end{align*}
✓ Sympy. Time used: 0.231 (sec). Leaf size: 31
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x + Derivative(y(x), (x, 2))**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = C_{1} + C_{2} x - \frac {4 x^{\frac {5}{2}}}{15}, \ y{\left (x \right )} = C_{1} + C_{2} x + \frac {4 x^{\frac {5}{2}}}{15}\right ]
\]