2.3.13 Problem 13
Internal
problem
ID
[10344]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
13
Date
solved
:
Thursday, November 27, 2025 at 10:34:47 AM
CAS
classification
:
[_separable]
\begin{align*}
y^{\prime }+\left (a t +b t \right ) y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*}
Using Laplace transform method.
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} t^{n} f \left (t \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (t \right )\) . Applying the above property to each term of the
ode gives
\begin{align*} \left (a t +b t \right ) y &\xrightarrow {\mathscr {L}} -a \left (\frac {d}{d s}Y \left (s \right )\right )-b \left (\frac {d}{d s}Y \left (s \right )\right )\\ y^{\prime } &\xrightarrow {\mathscr {L}} Y \left (s \right ) s -y \left (0\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
-a Y^{\prime }-b Y^{\prime }+Y s -y \left (0\right ) = 0
\]
Replacing
\(y \left (0\right ) = 0\) in the above results
in
\[
-a Y^{\prime }-b Y^{\prime }+Y s = 0
\]
The above ode in Y(s) is now solved.
Solve In canonical form a linear first order is
\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(s) &=-\frac {s}{a +b}\\ p(s) &=0 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,ds}}\\ &= {\mathrm e}^{\int -\frac {s}{a +b}d s}\\ &= {\mathrm e}^{-\frac {s^{2}}{2 a +2 b}} \end{align*}
The ode becomes
\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \mu Y &= 0 \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \left (Y \,{\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}\right ) &= 0 \end{align*}
Integrating gives
\begin{align*} Y \,{\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}&= \int {0 \,ds} + c_1 \\ &=c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}\) gives the final solution
\[ Y = c_1 \,{\mathrm e}^{\frac {s^{2}}{2 a +2 b}} \]
Applying inverse Laplace
transform on the above gives.
\begin{align*} y = c_1 \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left ({\mathrm e}^{\frac {s^{2}}{2 a +2 b}}, s , t\right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = 0\) and \(y^{\prime }\left (0\right ) = 0\) into the above solution Gives
\[
0 = c_1 \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left ({\mathrm e}^{\frac {s^{2}}{2 a +2 b}}, s , t\right )
\]
Solving for the constant
\(c_1\) from
the above equation gives
\begin{align*} c_1 = 0 \end{align*}
Substituting the above back into the solution (1) gives
\[
y = 0
\]
Figure 2.84: Solutions plot
✓ Maple. Time used: 0.069 (sec). Leaf size: 5
ode := diff ( y ( t ), t )+( a * t + b * t )* y ( t ) = 0;
ic :=[ y (0) = 0];
dsolve ([ ode , op ( ic )], y ( t ), method = ' laplace ' );
\[
y = 0
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}y \left (t \right )+\left (a t +b t \right ) y \left (t \right )=0, y \left (0\right )=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y \left (t \right )=-\left (a t +b t \right ) y \left (t \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}=-a t -b t \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}d t =\int \left (-a t -b t \right )d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (t \right )\right )=-\frac {t^{2} \left (a +b \right )}{2}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (t \right ) \\ {} & {} & y \left (t \right )={\mathrm e}^{-\frac {1}{2} t^{2} a -\frac {1}{2} t^{2} b +\mathit {C1}} \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & y \left (t \right )={\mathrm e}^{\frac {\left (-a -b \right ) t^{2}}{2}+\mathit {C1}} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} \,{\mathrm e}^{\frac {\left (-a -b \right ) t^{2}}{2}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =0 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =0\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y \left (t \right )=0 \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y \left (t \right )=0 \end {array} \]
✓ Mathematica. Time used: 0.002 (sec). Leaf size: 6
ode = D [ y [ t ], t ]+( a * t + b * t )* y [ t ]==0;
ic = y [0]==0;
DSolve [{ ode , ic }, y [ t ], t , IncludeSingularSolutions -> True ]
\begin{align*} y(t)&\to 0 \end{align*}
✓ Sympy. Time used: 0.206 (sec). Leaf size: 3
from sympy import *
t = symbols("t")
a = symbols("a")
b = symbols("b")
y = Function("y")
ode = Eq((a*t + b*t)*y(t) + Derivative(y(t), t),0)
ics = {y(0): 0}
dsolve ( ode , func = y ( t ), ics = ics )
\[
y{\left (t \right )} = 0
\]