Chapter 1
Lookup tables for all problems in current book

1.1 Exercises 3, page 60

1.1 Exercises 3, page 60

Table 1.1: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

4189

1(a)

\begin{align*} y^{\prime } y&=x \\ \end{align*}

4190

1(b)

\begin{align*} y^{\prime }-y&=x^{3} \\ \end{align*}

4191

1(c)

\begin{align*} y^{\prime }+y \cot \left (x \right )&=x \\ \end{align*}

4192

1(d)

\begin{align*} y^{\prime }+y \cot \left (x \right )&=\tan \left (x \right ) \\ \end{align*}

4193

1(e)

\begin{align*} y^{\prime }+y \tan \left (x \right )&=\cot \left (x \right ) \\ \end{align*}

4194

1(f)

\begin{align*} y^{\prime }+y \ln \left (x \right )&=x^{-x} \\ \end{align*}

4195

2(a)

\begin{align*} y^{\prime } x +y&=x \\ \end{align*}

4196

2(b)

\begin{align*} -y+y^{\prime } x&=x^{3} \\ \end{align*}

4197

2(c)

\begin{align*} y^{\prime } x +n y&=x^{n} \\ \end{align*}

4198

2(d)

\begin{align*} y^{\prime } x -n y&=x^{n} \\ \end{align*}

4199

2(e)

\begin{align*} \left (x^{3}+x \right ) y^{\prime }+y&=x \\ \end{align*}

4200

3(a)

\begin{align*} \cot \left (x \right ) y^{\prime }+y&=x \\ \end{align*}

4201

3(b)

\begin{align*} \cot \left (x \right ) y^{\prime }+y&=\tan \left (x \right ) \\ \end{align*}

4202

3(c)

\begin{align*} \tan \left (x \right ) y^{\prime }+y&=\cot \left (x \right ) \\ \end{align*}

4203

3(a)

\begin{align*} \tan \left (x \right ) y^{\prime }&=-\cos \left (x \right )+y \\ \end{align*}

4204

4(a)

\begin{align*} y^{\prime }+y \cos \left (x \right )&=\sin \left (2 x \right ) \\ \end{align*}

4205

4(b)

\begin{align*} \cos \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

4206

4(c)

\begin{align*} y^{\prime }+y \sin \left (x \right )&=\sin \left (2 x \right ) \\ \end{align*}

4207

4(d)

\begin{align*} \sin \left (x \right ) y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

4208

5(a)

\begin{align*} \sqrt {x^{2}+1}\, y^{\prime }+y&=2 x \\ \end{align*}

4209

5(b)

\begin{align*} \sqrt {x^{2}+1}\, y^{\prime }-y&=2 \sqrt {x^{2}+1} \\ \end{align*}

4210

5(c)

\begin{align*} \sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y&=0 \\ \end{align*}

4211

5(d)

\begin{align*} \sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y&=\sqrt {x +a}-\sqrt {x +b} \\ \end{align*}