Taken from Mathematica Symbolic PDE document
quasilinear first-order PDE, scalar conservation law
Solve for \(u(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, y], {x}] + u[x, y]*D[u[x, y], {y}] == 0; sol = AbsoluteTiming[TimeConstrained[Simplify[DSolve[pde, u[x, y], {x, y}]], 60*10]];
Maple ✓
restart; interface(showassumed=0); pde := diff(u(x, y), x) + u(x,y)*diff(u(x, y),y) =0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,y))),output='realtime')); sol:=DEtools:-remove_RootOf(sol);
Hand solution
Solve for \(u\left ( x,y\right ) \) in \(u_{x}+u\ u_{y}=0.\) Using the Lagrange-Charpit method, the characteristic equations are
From the first pair of equation we obtain
But \(du=0\) or \(u=C_{2}\). Hence the above becomes
Since \(C_{2}=F\left ( C_{1}\right ) \) where \(F\) is arbitrary function, then
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________