Added May 27, 2019.
From UMN Math 5587 HW2, Fall 2016, problem 5(b).
Solve for \(u(x,y)\)
With \(u(x,0)=0,u(0,y)=0\).
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, y], x] * D[u[x, y], y] == u[x,y]; bc={u[x,0]==0,u[0,y]==0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc},u[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(u(x,y),x)*diff(u(x,y),y)=u(x,y); bc := u(x,0)=0,u(0,y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(x,y),HINT=`*`)),output='realtime'));
Hand solution
Solve \(u_{x}u_{y}=u\) with \(u\left ( x,0\right ) =0,u\left ( 0,y\right ) =0\).
Let \(u=X\left ( x\right ) Y\left ( y\right ) \). The pde becomes \(\left ( X^{\prime }Y\right ) \left ( Y^{\prime }X\right ) =XY\) or \(X^{\prime }Y^{\prime }=1\) or \(X^{\prime }=\frac {1}{Y^{\prime }}\). Hence both sides are constant, say \(\lambda \). Therefore we have 2 differential equations to solve
And
The solution to the first one is \(X\left ( x\right ) =\lambda x+C_{1}\). The solution to the second equation is \(Y\left ( y\right ) =\frac {1}{\lambda }y+C_{2}\).
Since \(u=X\left ( x\right ) Y\left ( y\right ) \) then the solution is
Using the condition \(u\left ( x,0\right ) =0\) gives
Differentiating gives
But \(\lambda \neq 0\) for nontrivial solution, hence \(C_{2}=0\). Therefore (1) reduces to
Using the condition \(u\left ( 0,y\right ) =0\) gives
Hence \(C_{1}=0\). Therefore the solution becomes