Added December 1, 2019.
Problem Chapter 8.8.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f[x]*D[w[x,y,z],x]+g[y]*D[w[x,y,z],y]+h[z]*D[w[x,y,z],z]==(varphi[z]+psi[y]+chi[z])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := f(x)*diff(w(x,y,z),x)+ g(y)*diff(w(x,y,z),y)+ h(x)*diff(w(x,y,z),z)=(varphi(z)+psi(y)+chi(z))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f[x]*D[w[x,y,z],x]+z*D[w[x,y,z],y]+g[y]*D[w[x,y,z],z]==(h2[x]+h1[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := f(x)*diff(w(x,y,z),x)+ z*diff(w(x,y,z),y)+ g(y)*diff(w(x,y,z),z)=(h__2(x)+h__1(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f1[x]*D[w[x,y,z],x]+f2[x]*g[y]*D[w[x,y,z],y]+f3[x]*h[z]*D[w[x,y,z],z]==f4[x]*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := f__1(x)*diff(w(x,y,z),x)+ f__2(x)*g(y)*diff(w(x,y,z),y)+ f__3(x)*h(z)*diff(w(x,y,z),z)=f__4(x)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(f1[x]*y+f2[x])*D[w[x,y,z],y]+(g1[x]*z+g2[x])*D[w[x,y,z],z]==(h1[x]+h2[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (f__1(x)*y+f__2(x))*diff(w(x,y,z),y)+ (g__1(x)*z+g__2(x))*diff(w(x,y,z),z)=(h__1(x)+h__2(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(f1[x]*y+f2[x]*y^k)*D[w[x,y,z],y]+(g1[y]*z+g2[x])*D[w[x,y,z],z]==(h1[x]+h2[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✗
restart; local gamma; pde := diff(w(x,y,z),x)+ (f__1(y)*y+f__2(x)*y^k)*diff(w(x,y,z),y)+ (g__1(y)*z+g__2(x))*diff(w(x,y,z),z)=(h__1(x)+h__2(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(f1[x]*y+f2[x]*y^k)*D[w[x,y,z],y]+(g1[x]+g2[x]*Exp[lambda*z])*D[w[x,y,z],z]==(h1[x]+h2[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (f__1(x)*y+f__2(x)*y^k)*diff(w(x,y,z),y)+ (g__1(x)+g__2(x)*exp(lambda*z))*diff(w(x,y,z),z)=(h__1(x)+h__2(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(f1[x]*y+f2[x]*Exp[lambda*y])*D[w[x,y,z],y]+(g1[y]*z+g2[x]*z^k)*D[w[x,y,z],z]==(h1[x]+h2[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✗
restart; local gamma; pde := diff(w(x,y,z),x)+ (f__1(x)*y+f__2(x)*exp(lambda*y))*diff(w(x,y,z),y)+ (g__1(y)*z+g__2(x)*z^k)*diff(w(x,y,z),z)=(h__1(x)+h__2(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added December 1, 2019.
Problem Chapter 8.8.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+(f1[x]*y+f2[x]*Exp[lambda*y])*D[w[x,y,z],y]+(g1[x]+g2[y]*Exp[beta*z])*D[w[x,y,z],z]==(h1[x]+h2[y])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✗
restart; local gamma; pde := diff(w(x,y,z),x)+ (f__1(x)*y+f__2(x)*exp(lambda*y))*diff(w(x,y,z),y)+ (g__1(x)+g__2(y)*exp(beta*z))*diff(w(x,y,z),z)=(h__1(x)+h__2(y))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________