6.8.19 7.1

6.8.19.1 [1869] Problem 1
6.8.19.2 [1870] Problem 2
6.8.19.3 [1871] Problem 3
6.8.19.4 [1872] Problem 4
6.8.19.5 [1873] Problem 5
6.8.19.6 [1874] Problem 6

6.8.19.1 [1869] Problem 1

problem number 1869

Added Nov 30, 2019.

Problem Chapter 8.7.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a w_y + b w_z = c \arcsin ^n(\beta x) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+a*D[w[x,y,z],y]+b*D[w[x,y,z],z]==c*ArcSin[beta*x]^n * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to \exp \left (\frac {i c \arcsin (\beta x)^n \left (\arcsin (\beta x)^2\right )^{-n} \left ((-i \arcsin (\beta x))^n \Gamma (n+1,i \arcsin (\beta x))-(i \arcsin (\beta x))^n \Gamma (n+1,-i \arcsin (\beta x))\right )}{2 \beta }\right ) c_1(y-a x,z-b x)\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*arcsin(beta*x)^n*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (-a x +y , -b x +z \right ) {\mathrm e}^{c \int \arcsin \left (\beta x \right )^{n}d x}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.8.19.2 [1870] Problem 2

problem number 1870

Added Nov 30, 2019.

Problem Chapter 8.7.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a_1 w_x + a_2 w_y + a_3 w_z = \left ( b_1 \arcsin (\lambda _1 x)+b_2 \arcsin (\lambda _2 y)+b_3 \arcsin (\lambda _3 z) \right ) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a1*D[w[x,y,z],x]+a2*D[w[x,y,z],y]+a3*D[w[x,y,z],z]== (b1*ArcSin[lambda1*x]+b2*ArcSin[lambda2*y]+b3*ArcSin[lambda3*z] ) * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {\text {a2} x}{\text {a1}},z-\frac {\text {a3} x}{\text {a1}}\right ) \exp \left (\frac {\text {b1} x \arcsin (\text {lambda1} x)}{\text {a1}}+\frac {\text {b1} \sqrt {1-\text {lambda1}^2 x^2}}{\text {a1} \text {lambda1}}+\frac {\text {b2} y \arcsin (\text {lambda2} y)}{\text {a2}}+\frac {\text {b2} \sqrt {1-\text {lambda2}^2 y^2}}{\text {a2} \text {lambda2}}+\frac {\text {b3} z \arcsin (\text {lambda3} z)}{\text {a3}}+\frac {\text {b3} \sqrt {1-\text {lambda3}^2 z^2}}{\text {a3} \text {lambda3}}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=  a__1*diff(w(x,y,z),x)+ a__2*diff(w(x,y,z),y)+ a__3*diff(w(x,y,z),z)= (b__1*arcsin(lambda__1*x)+b__2*arcsin(lambda__2*y)+b__3*arcsin(lambda__3*z))*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {y a_{1} -x a_{2}}{a_{1}}, \frac {z a_{1} -a_{3} x}{a_{1}}\right ) {\mathrm e}^{\frac {\sqrt {-\lambda _{1}^{2} x^{2}+1}\, b_{1} a_{2} \lambda _{2} a_{3} \lambda _{3} +\left (\lambda _{3} a_{1} a_{3} b_{2} \sqrt {-y^{2} \lambda _{2}^{2}+1}+\lambda _{2} \left (a_{1} a_{2} b_{3} \sqrt {-z^{2} \lambda _{3}^{2}+1}+\lambda _{3} \left (x \arcsin \left (\lambda _{1} x \right ) a_{2} a_{3} b_{1} +a_{1} \left (\arcsin \left (\lambda _{2} y \right ) y a_{3} b_{2} +\arcsin \left (\lambda _{3} z \right ) z a_{2} b_{3} \right )\right )\right )\right ) \lambda _{1}}{\lambda _{1} a_{2} \lambda _{2} a_{3} \lambda _{3} a_{1}}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.8.19.3 [1871] Problem 3

problem number 1871

Added Nov 30, 2019.

Problem Chapter 8.7.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \arcsin ^n(\lambda x) \arcsin ^k(\beta z) w_z = s \arcsin ^m(\gamma x) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcSin[lambda*x]^n*ArcSin[beta*z]^k*D[w[x,y,z],z]==s*ArcSin[gamma*x]^m * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arcsin(lambda*x)^n*arcsin(beta*z)^k*diff(w(x,y,z),z)= s*arcsin(gamma*x)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a y -b x}{a}, -\frac {\lambda \left (a \sqrt {\arcsin \left (\lambda x \right )}\, \left (n +1\right ) \left (-\operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right ) \arcsin \left (\beta z \right )+\arcsin \left (\beta z \right )^{-k +\frac {3}{2}}\right ) \sqrt {-\beta ^{2} z^{2}+1}-\beta \left (-a \sqrt {\arcsin \left (\lambda x \right )}\, z \left (n +1\right ) \operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right )+a \sqrt {\arcsin \left (\lambda x \right )}\, k z \arcsin \left (\beta z \right ) \left (n +1\right ) \operatorname {LommelS1}\left (-k +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\beta z \right )\right )-\sqrt {\arcsin \left (\beta z \right )}\, c x \left (k -1\right ) \left (\arcsin \left (\lambda x \right ) \operatorname {LommelS1}\left (n +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\lambda x \right )\right ) n +\operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda x \right )\right )\right )\right )\right ) \sqrt {-\lambda ^{2} x^{2}+1}+\sqrt {\arcsin \left (\beta z \right )}\, c \beta \left (\lambda x -1\right ) \left (\lambda x +1\right ) \left (k -1\right ) \left (\arcsin \left (\lambda x \right ) \operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda x \right )\right )-\arcsin \left (\lambda x \right )^{n +\frac {3}{2}}\right )}{\sqrt {\arcsin \left (\lambda x \right )}\, \sqrt {-\lambda ^{2} x^{2}+1}\, \sqrt {\arcsin \left (\beta z \right )}\, \beta \left (k -1\right ) c \lambda \left (n +1\right )}\right ) {\mathrm e}^{\frac {s \left (\gamma x \arcsin \left (\gamma x \right )+\sqrt {-\gamma ^{2} x^{2}+1}\right )}{a \gamma }}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.8.19.4 [1872] Problem 4

problem number 1872

Added Nov 30, 2019.

Problem Chapter 8.7.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \arcsin ^n(\lambda x) \arcsin ^m(\beta y) \arcsin ^k(\gamma z) w_z = s w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcSin[lambda*x]^n*ArcSin[beta*y]^m*ArcSin[gamma*z]^k*D[w[x,y,z],z]==s* w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arcsin(lambda*x)^n*arcsin(beta*y)^m*arcsin(gamma*z)^k*diff(w(x,y,z),z)= s*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a y -b x}{a}, \frac {-\gamma \sqrt {\arcsin \left (\gamma z \right )}\, c \left (k -1\right ) \int _{}^{x}\arcsin \left (\lambda \textit {\_a} \right )^{n} \arcsin \left (\frac {\beta \left (a y -b \left (x -\textit {\_a} \right )\right )}{a}\right )^{m}d \textit {\_a} +a \left (\left (\arcsin \left (\gamma z \right ) \operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\gamma z \right )\right )-\arcsin \left (\gamma z \right )^{-k +\frac {3}{2}}\right ) \sqrt {-\gamma ^{2} z^{2}+1}+\gamma z \left (\arcsin \left (\gamma z \right ) \operatorname {LommelS1}\left (-k +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\gamma z \right )\right ) k -\operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\gamma z \right )\right )\right )\right )}{\sqrt {\arcsin \left (\gamma z \right )}\, \left (k -1\right ) \gamma c}\right ) {\mathrm e}^{\frac {s x}{a}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.8.19.5 [1873] Problem 5

problem number 1873

Added Nov 30, 2019.

Problem Chapter 8.7.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \arcsin ^n(\lambda x) w_y + c \arcsin ^k(\beta z) w_z = s \arcsin ^m(\gamma x) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*ArcSin[lambda*x]^n*D[w[x,y,z],y]+c*ArcSin[beta*z]^k*D[w[x,y,z],z]==s* ArcSin[gamma*x]^m*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (-\frac {c x}{a}-\frac {i \arcsin (\beta z)^{-k} \left ((-i \arcsin (\beta z))^k \Gamma (1-k,-i \arcsin (\beta z))-(i \arcsin (\beta z))^k \Gamma (1-k,i \arcsin (\beta z))\right )}{2 \beta },\frac {\left (\arcsin (\lambda x)^2\right )^{-n} \left (2 a \lambda y \left (\arcsin (\lambda x)^2\right )^n+i b (i \arcsin (\lambda x))^n \arcsin (\lambda x)^n \Gamma (n+1,-i \arcsin (\lambda x))-i b (-i \arcsin (\lambda x))^n \arcsin (\lambda x)^n \Gamma (n+1,i \arcsin (\lambda x))\right )}{2 a \lambda }\right ) \exp \left (\int _1^z\frac {s \arcsin \left (\frac {\gamma \left (i a (-i \arcsin (\beta z))^k \Gamma (1-k,-i \arcsin (\beta z)) \arcsin (\beta z)^{-k}-i a (i \arcsin (\beta z))^k \Gamma (1-k,i \arcsin (\beta z)) \arcsin (\beta z)^{-k}+\arcsin (\beta K[1])^{-k} \left (-i a \Gamma (1-k,-i \arcsin (\beta K[1])) (-i \arcsin (\beta K[1]))^k+2 \beta c x \arcsin (\beta K[1])^k+i a (i \arcsin (\beta K[1]))^k \Gamma (1-k,i \arcsin (\beta K[1]))\right )\right )}{2 \beta c}\right )^m \arcsin (\beta K[1])^{-k}}{c}dK[1]\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arcsin(lambda*x)^n*diff(w(x,y,z),y)+ c*arcsin(beta*z)^k*diff(w(x,y,z),z)= s*arcsin(gamma*x)^m*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (-\frac {-b \left (-\arcsin \left (\lambda x \right ) \operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda x \right )\right )+\arcsin \left (\lambda x \right )^{n +\frac {3}{2}}\right ) \sqrt {-\lambda ^{2} x^{2}+1}+\left (-b x \operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda x \right )\right )-\operatorname {LommelS1}\left (n +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\lambda x \right )\right ) b n x \arcsin \left (\lambda x \right )+a \sqrt {\arcsin \left (\lambda x \right )}\, y \left (n +1\right )\right ) \lambda }{\sqrt {\arcsin \left (\lambda x \right )}\, \lambda \left (n +1\right ) a}, \frac {-\beta \sqrt {\arcsin \left (\beta z \right )}\, c \left (k -1\right ) \int _{}^{y}{\arcsin \left (\lambda \operatorname {RootOf}\left (\arcsin \left (\lambda \textit {\_Z} \right ) \operatorname {LommelS1}\left (n +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\lambda \textit {\_Z} \right )\right ) \textit {\_Z} b \lambda n -\sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}\, \lambda n b \int \arcsin \left (\lambda x \right )^{n}d x -\sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}\, a \lambda n \textit {\_b} +\sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}\, a \lambda n y -\lambda \sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}\, b \int \arcsin \left (\lambda x \right )^{n}d x -\textit {\_b} a \lambda \sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}+a \lambda \sqrt {\arcsin \left (\lambda \textit {\_Z} \right )}\, y -\sqrt {-\textit {\_Z}^{2} \lambda ^{2}+1}\, \arcsin \left (\lambda \textit {\_Z} \right ) \operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda \textit {\_Z} \right )\right ) b +\operatorname {LommelS1}\left (n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda \textit {\_Z} \right )\right ) \textit {\_Z} b \lambda +\sqrt {-\textit {\_Z}^{2} \lambda ^{2}+1}\, \arcsin \left (\lambda \textit {\_Z} \right )^{n +\frac {3}{2}} b \right )\right )}^{-n}d \textit {\_b} +\left (\left (\operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right ) \arcsin \left (\beta z \right )-\arcsin \left (\beta z \right )^{-k +\frac {3}{2}}\right ) \sqrt {-\beta ^{2} z^{2}+1}+\beta z \left (\arcsin \left (\beta z \right ) \operatorname {LommelS1}\left (-k +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\beta z \right )\right ) k -\operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right )\right )\right ) b}{\sqrt {\arcsin \left (\beta z \right )}\, \beta \left (k -1\right ) c}\right ) {\mathrm e}^{\frac {s \int _{}^{y}{\arcsin \left (\gamma \operatorname {RootOf}\left (\textit {\_b} a -b \int _{}^{\textit {\_Z}}\arcsin \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} -y a +b \int \arcsin \left (\lambda x \right )^{n}d x \right )\right )}^{m} {\arcsin \left (\lambda \operatorname {RootOf}\left (\textit {\_b} a -b \int _{}^{\textit {\_Z}}\arcsin \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} -y a +b \int \arcsin \left (\lambda x \right )^{n}d x \right )\right )}^{-n}d \textit {\_b}}{b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.8.19.6 [1874] Problem 6

problem number 1874

Added Nov 30, 2019.

Problem Chapter 8.7.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \arcsin ^n(\lambda y) w_y + c \arcsin ^k(\beta z) w_z = s w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*ArcSin[lambda*y]^n*D[w[x,y,z],y]+c*ArcSin[beta*z]^k*D[w[x,y,z],z]==s* w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arcsin(lambda*y)^n*diff(w(x,y,z),y)+ c*arcsin(beta*z)^k*diff(w(x,y,z),z)= s*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a \left (-\operatorname {LommelS1}\left (-n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda y \right )\right ) \arcsin \left (\lambda y \right )+\arcsin \left (\lambda y \right )^{-n +\frac {3}{2}}\right ) \sqrt {-\lambda ^{2} y^{2}+1}-\lambda \left (-a y \operatorname {LommelS1}\left (-n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda y \right )\right )+a \operatorname {LommelS1}\left (-n +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\lambda y \right )\right ) n y \arcsin \left (\lambda y \right )-\sqrt {\arcsin \left (\lambda y \right )}\, b x \left (n -1\right )\right )}{\sqrt {\arcsin \left (\lambda y \right )}\, \left (n -1\right ) \lambda b}, -\frac {\left (b \sqrt {\arcsin \left (\lambda y \right )}\, \left (n -1\right ) \left (-\operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right ) \arcsin \left (\beta z \right )+\arcsin \left (\beta z \right )^{-k +\frac {3}{2}}\right ) \sqrt {-\beta ^{2} z^{2}+1}-\beta \left (\sqrt {\arcsin \left (\beta z \right )}\, c y \left (k -1\right ) \operatorname {LommelS1}\left (-n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda y \right )\right )-b \sqrt {\arcsin \left (\lambda y \right )}\, z \left (n -1\right ) \operatorname {LommelS1}\left (-k +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\beta z \right )\right )-\arcsin \left (\lambda y \right ) \sqrt {\arcsin \left (\beta z \right )}\, c n y \left (k -1\right ) \operatorname {LommelS1}\left (-n +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\lambda y \right )\right )+b \sqrt {\arcsin \left (\lambda y \right )}\, \operatorname {LommelS1}\left (-k +\frac {1}{2}, \frac {3}{2}, \arcsin \left (\beta z \right )\right ) k z \arcsin \left (\beta z \right ) \left (n -1\right )\right )\right ) \lambda \sqrt {-\lambda ^{2} y^{2}+1}-\sqrt {\arcsin \left (\beta z \right )}\, c \beta \left (\lambda y -1\right ) \left (\lambda y +1\right ) \left (k -1\right ) \left (\operatorname {LommelS1}\left (-n +\frac {3}{2}, \frac {1}{2}, \arcsin \left (\lambda y \right )\right ) \arcsin \left (\lambda y \right )-\arcsin \left (\lambda y \right )^{-n +\frac {3}{2}}\right )}{\sqrt {\arcsin \left (\lambda y \right )}\, \sqrt {\arcsin \left (\beta z \right )}\, \sqrt {-\lambda ^{2} y^{2}+1}\, \left (k -1\right ) \beta c \lambda \left (n -1\right )}\right ) {\mathrm e}^{\frac {s \int \arcsin \left (\lambda y \right )^{-n}d y}{b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________