6.8.15 6.2
6.8.15.1 [1848] Problem 1
problem number 1848
Added Oct 18, 2019.
Problem Chapter 8.6.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a w_y + b w_z = c \cos ^n(\beta x) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] + b*D[w[x,y,z],z]== c*Cos[beta*x]^n*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1(y-a x,z-b x) \exp \left (-\frac {c \sqrt {\sin ^2(\beta x)} \csc (\beta x) \cos ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right )}{\beta n+\beta }\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*cos(beta*x)^n*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-a x +y , -b x +z \right ) {\mathrm e}^{c \int \cos \left (\beta x \right )^{n}d x}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.15.2 [1849] Problem 2
problem number 1849
Added Oct 18, 2019.
Problem Chapter 8.6.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \cos (\beta z) w_z = \left ( k \cos (\lambda x)+s \cos (\gamma y) \right ) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Cos[beta*z]*D[w[x,y,z],z]== (k*Cos[lambda*x]+s*Cos[gamma*y])*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to e^{\frac {k \sin (\lambda x)}{a \lambda }+\frac {s \sin (\gamma y)}{b \gamma }} c_1\left (y-\frac {b x}{a},\frac {\coth ^{-1}(\sin (\beta z))}{\beta }-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+ c*cos(beta*z)*diff(w(x,y,z),z)= (k*cos(lambda*x)+s*cos(gamma*y))*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (\frac {x c \beta -a \ln \left (\sec \left (\beta z \right )+\tan \left (\beta z \right )\right )}{c \beta }, \frac {y c \beta -b \ln \left (\sec \left (\beta z \right )+\tan \left (\beta z \right )\right )}{c \beta }\right ) {\mathrm e}^{\frac {k \sin \left (\lambda x \right ) b \gamma +s \sin \left (\gamma y \right ) a \lambda }{a \lambda b \gamma }}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.15.3 [1850] Problem 3
problem number 1850
Added Oct 18, 2019.
Problem Chapter 8.6.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \cos ^n(\beta x) w_y + b \cos ^k(\lambda x) w_z = c \cos ^m(\gamma x) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y,z], x] + a*Cos[beta*x]^n*D[w[x, y,z], y] + b*Cos[lambda*x]^k*D[w[x,y,z],z]== c*Cos[gamma*x]^m*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \exp \left (-\frac {c \sqrt {\sin ^2(\gamma x)} \csc (\gamma x) \cos ^{m+1}(\gamma x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},\cos ^2(\gamma x)\right )}{\gamma m+\gamma }\right ) c_1\left (\frac {a \sqrt {\sin ^2(\beta x)} \csc (\beta x) \cos ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right )}{\beta n+\beta }+y,\frac {b \sqrt {\sin ^2(\lambda x)} \csc (\lambda x) \cos ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {k+1}{2},\frac {k+3}{2},\cos ^2(\lambda x)\right )}{k \lambda +\lambda }+z\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := diff(w(x,y,z),x)+a*cos(beta*x)^n*diff(w(x,y,z),y)+ b*cos(lambda*x)^k*diff(w(x,y,z),z)= c*cos(gamma*x)^m*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-a \int \cos \left (\beta x \right )^{n}d x +y , -b \int \cos \left (\lambda x \right )^{k}d x +z \right ) {\mathrm e}^{c \int \cos \left (\gamma x \right )^{m}d x}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.15.4 [1851] Problem 4
problem number 1851
Added Oct 18, 2019.
Problem Chapter 8.6.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \cos ^n(\beta x) w_y + b \cos ^m(\gamma y) w_z = \left ( c \cos ^k(\gamma y) + s \cos ^r(\mu z) \right ) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y,z], x] + a*Cos[beta*x]^n*D[w[x, y,z], y] + b*Cos[gamma*y]^m*D[w[x,y,z],z]== (c*Cos[gamma*y]^k+s*Cos[mu*z]^r)*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {a \sqrt {\sin ^2(\beta x)} \csc (\beta x) \cos ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right )}{\beta n+\beta }+y,z-\int _1^xb \cos ^m\left (\frac {\gamma \left (a \csc (\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right ) \sqrt {\sin ^2(\beta x)} \cos ^{n+1}(\beta x)+\beta (n+1) y-a \cos ^{n+1}(\beta K[1]) \csc (\beta K[1]) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta K[1])\right ) \sqrt {\sin ^2(\beta K[1])}\right )}{\beta (n+1)}\right )dK[1]\right ) \exp \left (\int _1^x\left (c \cos ^k\left (\frac {\gamma \left (a \csc (\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right ) \sqrt {\sin ^2(\beta x)} \cos ^{n+1}(\beta x)+\beta (n+1) y-a \cos ^{n+1}(\beta K[2]) \csc (\beta K[2]) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta K[2])\right ) \sqrt {\sin ^2(\beta K[2])}\right )}{\beta (n+1)}\right )+s \cos ^r\left (\mu \left (z-\int _1^xb \cos ^m\left (\frac {\gamma \left (a \csc (\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right ) \sqrt {\sin ^2(\beta x)} \cos ^{n+1}(\beta x)+\beta (n+1) y-a \cos ^{n+1}(\beta K[1]) \csc (\beta K[1]) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta K[1])\right ) \sqrt {\sin ^2(\beta K[1])}\right )}{\beta (n+1)}\right )dK[1]+\int _1^{K[2]}b \cos ^m\left (\frac {\gamma \left (a \csc (\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta x)\right ) \sqrt {\sin ^2(\beta x)} \cos ^{n+1}(\beta x)+\beta (n+1) y-a \cos ^{n+1}(\beta K[1]) \csc (\beta K[1]) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\cos ^2(\beta K[1])\right ) \sqrt {\sin ^2(\beta K[1])}\right )}{\beta (n+1)}\right )dK[1]\right )\right )\right )dK[2]\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := diff(w(x,y,z),x)+a*cos(beta*x)^n*diff(w(x,y,z),y)+ b*cos(gamma*y)^m*diff(w(x,y,z),z)= (c*cos(gamma*y)^k+s*cos(mu*z)^r)*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-a \int \cos \left (\beta x \right )^{n}d x +y , -b \int _{}^{x}{\cos \left (\gamma \left (a \int \cos \left (\beta \textit {\_g} \right )^{n}d \textit {\_g} -a \int \cos \left (\beta x \right )^{n}d x +y \right )\right )}^{m}d \textit {\_g} +z \right ) {\mathrm e}^{\int _{}^{x}\left (c {\cos \left (\gamma \left (a \int \cos \left (\beta \textit {\_g} \right )^{n}d \textit {\_g} -a \int \cos \left (\beta x \right )^{n}d x +y \right )\right )}^{k}+s {\cos \left (\mu \left (-b \int _{}^{x}{\cos \left (\gamma \left (a \int \cos \left (\beta \textit {\_g} \right )^{n}d \textit {\_g} -a \int \cos \left (\beta x \right )^{n}d x +y \right )\right )}^{m}d \textit {\_g} +b \int {\cos \left (\gamma \left (a \int \cos \left (\beta \textit {\_g} \right )^{n}d \textit {\_g} -a \int \cos \left (\beta x \right )^{n}d x +y \right )\right )}^{m}d \textit {\_g} +z \right )\right )}^{r}\right )d \textit {\_g}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.15.5 [1852] Problem 5
problem number 1852
Added Oct 18, 2019.
Problem Chapter 8.6.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \cos (\beta y) w_y + c \cos (\lambda x) w_z = k \cos (\gamma z) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = a*D[w[x, y,z], x] + b*Cos[beta*y]*D[w[x, y,z], y] + c*Cos[lambda*x]^m*D[w[x,y,z],z]== k*Cos[gamma*z]*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\coth ^{-1}(\sin (\beta y))}{\beta }-\frac {b x}{a},\frac {c \sqrt {\sin ^2(\lambda x)} \csc (\lambda x) \cos ^{m+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},\cos ^2(\lambda x)\right )}{a \lambda m+a \lambda }+z\right ) \exp \left (\int _1^x\frac {k \cos \left (\frac {\gamma \left (c \csc (\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},\cos ^2(\lambda x)\right ) \sqrt {\sin ^2(\lambda x)} \cos ^{m+1}(\lambda x)+a \lambda (m+1) z-c \cos ^{m+1}(\lambda K[1]) \csc (\lambda K[1]) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},\cos ^2(\lambda K[1])\right ) \sqrt {\sin ^2(\lambda K[1])}\right )}{a \lambda (m+1)}\right )}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := a*diff(w(x,y,z),x)+b*cos(beta*y)*diff(w(x,y,z),y)+ c*cos(lambda*x)^m*diff(w(x,y,z),z)= k*cos(gamma*z)*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (\frac {x b \beta -a \ln \left (\sec \left (\beta y \right )+\tan \left (\beta y \right )\right )}{b \beta }, -\frac {c \int _{}^{y}\cos \left (\frac {\lambda \left (x b \beta -a \ln \left (\sec \left (\beta y \right )+\tan \left (\beta y \right )\right )+a \ln \left (\sec \left (\beta \textit {\_b} \right )+\tan \left (\beta \textit {\_b} \right )\right )\right )}{b \beta }\right )^{m} \sec \left (\beta \textit {\_b} \right )d \textit {\_b}}{b}+z \right ) {\mathrm e}^{\frac {k \int _{}^{y}\cos \left (\frac {\gamma \left (c \int \cos \left (\frac {\lambda \left (x b \beta -a \ln \left (\sec \left (\beta y \right )+\tan \left (\beta y \right )\right )+a \ln \left (\sec \left (\beta \textit {\_b} \right )+\tan \left (\beta \textit {\_b} \right )\right )\right )}{b \beta }\right )^{m} \sec \left (\beta \textit {\_b} \right )d \textit {\_b} -c \int _{}^{y}\cos \left (\frac {\lambda \left (x b \beta -a \ln \left (\sec \left (\beta y \right )+\tan \left (\beta y \right )\right )+a \ln \left (\sec \left (\beta \textit {\_b} \right )+\tan \left (\beta \textit {\_b} \right )\right )\right )}{b \beta }\right )^{m} \sec \left (\beta \textit {\_b} \right )d \textit {\_b} +z b \right )}{b}\right ) \sec \left (\beta \textit {\_b} \right )d \textit {\_b}}{b}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.15.6 [1853] Problem 6
problem number 1853
Added Oct 18, 2019.
Problem Chapter 8.6.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a_1 \cos ^{n_1}(\lambda _1 x) w_x + b_1 \cos ^{m_1}(\beta _1 y) w_y + c_1 \cos ^{k_1}(\gamma _1 z) w_z = \left ( a_2 \cos ^{n_2}(\lambda _2 x) + b_2 \cos ^{m_2}(\beta _2 y) + c_2 \cos ^{k_2}(\gamma _2 z) \right ) w \]
Mathematica ✗
ClearAll["Global`*"];
pde = a1*Cos[lambda1*z]^n1*D[w[x, y,z], x] + b1*Cos[beta1*y]^m1*D[w[x, y,z], y] + c1*Cos[gamma1*z]^k1*D[w[x,y,z],z]== (a2*Cos[lambda2*z]^n2 + b2*Cos[beta2*y]^m2 + c2*Cos[gamma2*z]^k2)*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart;
local gamma;
pde := a1*cos(lambda1*z)^n1*diff(w(x,y,z),x)+ b1*cos(beta1*y)^m1*diff(w(x,y,z),y)+ c1*cos(gamma1*z)^k1*diff(w(x,y,z),z)= (a2*cos(lambda2*z)^n2 + b2*cos(beta2*y)^m2 + c2*cos(gamma2*z)^k2)*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-\int \cos \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y +\frac {\operatorname {b1} \int \cos \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z}{\operatorname {c1}}, -\frac {\operatorname {a1} \int _{}^{y}{\cos \left (\lambda \operatorname {1} \operatorname {RootOf}\left (-\int \cos \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} +\operatorname {b1} \int \cos \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \cos \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\cos \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} \right )\right )}^{\operatorname {n1}} \cos \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f}}{\operatorname {b1}}+x \right ) {\mathrm e}^{\frac {\int _{}^{y}\left (\operatorname {a2} {\cos \left (\lambda \operatorname {2} \operatorname {RootOf}\left (-\int \cos \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} +\operatorname {b1} \int \cos \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \cos \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\cos \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} \right )\right )}^{\operatorname {n2}}+\operatorname {b2} \cos \left (\beta \operatorname {2} \textit {\_f} \right )^{\operatorname {m2}}+\operatorname {c2} {\cos \left (\gamma \operatorname {2} \operatorname {RootOf}\left (-\int \cos \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} +\operatorname {b1} \int \cos \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \cos \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\cos \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} \right )\right )}^{\operatorname {k2}}\right ) \cos \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f}}{\operatorname {b1}}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________