Added Oct 17, 2019.
Problem Chapter 8.5.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] + b*D[w[x,y,z],z]== c*Log[beta*x]^n*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*ln(beta*x)^n*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 17, 2019.
Problem Chapter 8.5.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Log[beta*x]^n*D[w[x,y,z],z]== s*Log[lambda*y]^m*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+ c*ln(beta*x)^n*diff(w(x,y,z),z)= s*ln(lambda*y)^m*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 17, 2019.
Problem Chapter 8.5.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Log[beta*x]^n*D[w[x, y,z], y] + b*Log[lambda*x]^k*D[w[x,y,z],z]== c*Log[gamma*x]^m*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*ln(beta*x)^n*diff(w(x,y,z),y)+ b*ln(lambda*x)^k*diff(w(x,y,z),z)= c*ln(gamma*x)^m*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 17, 2019.
Problem Chapter 8.5.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Log[beta*x]^n*D[w[x, y,z], y] + b*Log[lambda*y]^k*D[w[x,y,z],z]== c*Log[gamma*x]^m*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*ln(beta*x)^n*diff(w(x,y,z),y)+ b*ln(lambda*y)^k*diff(w(x,y,z),z)= c*ln(gamma*x)^m*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 17, 2019.
Problem Chapter 8.5.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a1*Log[lambda1*x]^n1*D[w[x, y,z], x] + b1*Log[beta1*y]^m1*D[w[x, y,z], x]*D[w[x, y,z], y] + c1*Log[gamma1*z]^k1*D[w[x,y,z],z]== ( a2*Log[lambda2*x]^n2+ b2*Log[beta2*y]^m2+ c2*Log[gamma2*z]^k2)*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a1*ln(lambda1*x)^n1*diff(w(x,y,z),x)+ b1*ln(beta1*y)^m1*diff(w(x,y,z),y)+ c1*ln(gamma1*z)^k1*diff(w(x,y,z),z)= (a2*ln(lambda2*x)^n2+ b2*ln(beta2*y)^m2+ c2*ln(gamma2*z)^k2)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________