Added Oct 10, 2019.
Problem Chapter 8.4.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] + b*D[w[x,y,z],z]== c*Tanh[beta*x]^n*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*tanh(beta*x)^n*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 10, 2019.
Problem Chapter 8.4.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Tanh[lambda*x]*D[w[x,y,z],z]== (k*Tanh[beta*x]+s*Tanh[gamma*z])*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x, y,z), x) + b*diff(w(x, y,z), y) + c*tanh(lambda*x)*diff(w(x,y,z),z)= (k*tanh(beta*x)+s*tanh(gamma*z))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 10, 2019.
Problem Chapter 8.4.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Tanh[beta*x]^n*D[w[x, y,z], y] + b*Tanh[lambda*x]^k*D[w[x,y,z],z]== c*Tanh[gamma*x]^m *w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x, y,z), x) + a*tanh(beta*x)^n*diff(w(x, y,z), y) + b*tanh(lambda*x)^k*diff(w(x,y,z),z)= c*tanh(gamma*x)^m *w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 10, 2019.
Problem Chapter 8.4.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Tanh[beta*y]*D[w[x, y,z], y] + c*Tanh[lambda*x]*D[w[x,y,z],z]== k*Tanh[gamma*z] *w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a*diff(w(x, y,z), x) + b*tanh(beta*y)*diff(w(x, y,z), y) + c*tanh(lambda*x)*diff(w(x,y,z),z)= k*tanh(gamma*z) *w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 10, 2019.
Problem Chapter 8.4.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Tanh[beta*y]*D[w[x, y,z], y] + c*Tanh[gamma*z]*D[w[x,y,z],z]== k*Tanh[lambda*x] *w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x, y,z), x) + b*tanh(beta*y)*diff(w(x, y,z), y) + c*tanh(gamma*z)*diff(w(x,y,z),z)= k*tanh(lambda*x) *w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Oct 10, 2019.
Problem Chapter 8.4.3.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a1*Tanh[lambda1*x]^n1*D[w[x, y,z], x] + b1*Tanh[beta1*y]^m1*D[w[x, y,z], y] + c1*Tanh[gamma1*x]^k1*D[w[x, y,z], z]== (a2*Tanh[lambda2*x]^n2+b2*Tanh[beta2*y]^m2+c2*Tanh[gamma2*x]^k2) *w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a1*tanh(lambda1*x)^n1*diff(w(x, y,z), x) + b1*tanh(beta1*y)^m1*diff(w(x, y,z), y) + c1*tanh(gamma1*x)^k1*diff(w(x,y,z),z)= ( a2*tanh(lambda2*x)^n2+b2*tanh(beta2*y)^m2+c2*tanh(gamma2*x)^k2) *w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________