6.7.10 4.4

6.7.10.1 [1652] Problem 1
6.7.10.2 [1653] Problem 2
6.7.10.3 [1654] Problem 3
6.7.10.4 [1655] Problem 4
6.7.10.5 [1656] Problem 5
6.7.10.6 [1657] Problem 6

6.7.10.1 [1652] Problem 1

problem number 1652

Added June 20, 2019.

Problem Chapter 7.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a w_y + b w_z = c \coth ^k(\lambda x)+s \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] +  b*D[w[x,y,z],z]== c*Coth[lambda*x]^k+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1(y-a x,z-b x)+\frac {c \coth ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {k+1}{2},\frac {k+3}{2},\coth ^2(\lambda x)\right )}{k \lambda +\lambda }+s x\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)=c*coth(lambda*x)^k+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = c \int \coth \left (\lambda x \right )^{k}d x +s x +f_{1} \left (-a x +y , -b x +z \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.7.10.2 [1653] Problem 2

problem number 1653

Added June 20, 2019.

Problem Chapter 7.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \coth (\lambda x) w_z = k \coth (\beta y)+s \coth (\gamma z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +  c*Coth[lambda*x]*D[w[x,y,z],z]== k*Coth[beta*y]+s*Coth[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to \int _1^x\frac {k \coth \left (\beta \left (y+\frac {b (K[1]-x)}{a}\right )\right )+s \coth \left (\frac {\gamma (a \lambda z-c \log (\sinh (\lambda x))+c \log (\sinh (\lambda K[1])))}{a \lambda }\right )}{a}dK[1]+c_1\left (y-\frac {b x}{a},z-\frac {c \log (\sinh (\lambda x))}{a \lambda }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*coth(lambda*x)*diff(w(x,y,z),z)=k*coth(beta*y)+s*coth(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = \frac {\int _{}^{x}\frac {\left (\left (-\cosh \left (\frac {\beta b \textit {\_a}}{a}\right ) \sinh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) k -\sinh \left (\frac {\beta b \textit {\_a}}{a}\right ) s \cosh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right )\right ) \cosh \left (\frac {\beta \left (a y -b x \right )}{a}\right )-\sinh \left (\frac {\beta \left (a y -b x \right )}{a}\right ) \left (\cosh \left (\frac {\beta b \textit {\_a}}{a}\right ) \cosh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) s +\sinh \left (\frac {\beta b \textit {\_a}}{a}\right ) \sinh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) k \right )\right ) \cosh \left (\frac {\gamma \left (-z a \lambda +c \ln \left (\sinh \left (\lambda x \right )\right )\right )}{a \lambda }\right )+\sinh \left (\frac {\gamma \left (-z a \lambda +c \ln \left (\sinh \left (\lambda x \right )\right )\right )}{a \lambda }\right ) \left (\left (\cosh \left (\frac {\beta b \textit {\_a}}{a}\right ) \cosh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) k +\sinh \left (\frac {\beta b \textit {\_a}}{a}\right ) \sinh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) s \right ) \cosh \left (\frac {\beta \left (a y -b x \right )}{a}\right )+\sinh \left (\frac {\beta \left (a y -b x \right )}{a}\right ) \left (\cosh \left (\frac {\beta b \textit {\_a}}{a}\right ) \sinh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right ) s +\sinh \left (\frac {\beta b \textit {\_a}}{a}\right ) k \cosh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right )\right )\right )}{\left (\sinh \left (\frac {\beta \left (a y -b x \right )}{a}\right ) \cosh \left (\frac {\beta b \textit {\_a}}{a}\right )+\cosh \left (\frac {\beta \left (a y -b x \right )}{a}\right ) \sinh \left (\frac {\beta b \textit {\_a}}{a}\right )\right ) \left (\sinh \left (\frac {\gamma \left (-z a \lambda +c \ln \left (\sinh \left (\lambda x \right )\right )\right )}{a \lambda }\right ) \cosh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right )-\cosh \left (\frac {\gamma \left (-z a \lambda +c \ln \left (\sinh \left (\lambda x \right )\right )\right )}{a \lambda }\right ) \sinh \left (\frac {\gamma c \ln \left (\sinh \left (\lambda \textit {\_a} \right )\right )}{a \lambda }\right )\right )}d \textit {\_a}}{a}+f_{1} \left (\frac {a y -b x}{a}, \frac {z a \lambda -c \ln \left (\sinh \left (\lambda x \right )\right )}{a \lambda }\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.7.10.3 [1654] Problem 3

problem number 1654

Added June 20, 2019.

Problem Chapter 7.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a \coth ^n(\beta x) w_y + b \coth ^k(\lambda x) w_z = c \coth ^m(\gamma x)+s \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Coth[beta*x]^n*D[w[x, y,z], y] +  b*Coth[lambda*x]^k*D[w[x,y,z],z]== c*Coth[gamma*x]^m+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (z-\frac {b \coth ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {k+1}{2},\frac {k+3}{2},\coth ^2(\lambda x)\right )}{k \lambda +\lambda },y-\frac {a \coth ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},\coth ^2(\beta x)\right )}{\beta n+\beta }\right )+\frac {c \coth ^{m+1}(\gamma x) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},\coth ^2(\gamma x)\right )}{\gamma m+\gamma }+s x\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*coth(beta*x)^n*diff(w(x,y,z),y)+ b*coth(lambda*x)^k*diff(w(x,y,z),z)=c*coth(gamma*x)^m+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = c \int \coth \left (\gamma x \right )^{m}d x +s x +f_{1} \left (-a \int \coth \left (\beta x \right )^{n}d x +y , -b \int \coth \left (\lambda x \right )^{k}d x +z \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.7.10.4 [1655] Problem 4

problem number 1655

Added June 20, 2019.

Problem Chapter 7.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \coth (\beta y) w_y + c \coth (\lambda x) w_z = k \coth (\gamma z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +  c*Coth[lambda*x]*D[w[x,y,z],z]== k*Coth[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde := a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+ c*coth(lambda*x)*diff(w(x,y,z),z)=k*coth(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {x b \beta -a \ln \left (\cosh \left (\beta y \right )\right )}{b \beta }, \frac {z a \lambda -c \ln \left (\sinh \left (\lambda x \right )\right )}{a \lambda }\right )-\frac {k \int _{}^{y}-\coth \left (\frac {\gamma \left (z a \lambda -c \ln \left (\sinh \left (\lambda x \right )\right )+c \ln \left (-\sinh \left (\frac {\lambda \left (-x b \beta +a \ln \left (\cosh \left (\beta y \right )\right )-a \ln \left (\cosh \left (\beta \textit {\_a} \right )\right )\right )}{b \beta }\right )\right )\right )}{a \lambda }\right ) \tanh \left (\beta \textit {\_a} \right )d \textit {\_a}}{b}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.7.10.5 [1656] Problem 5

problem number 1656

Added June 20, 2019.

Problem Chapter 7.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \coth (\beta y) w_y + c \coth (\gamma z) w_z = p \coth (\lambda x)+q \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +  c*Coth[gamma*z]*D[w[x,y,z],z]== p*Coth[lambda*x]+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {a \log (\text {sech}(\gamma z))+c \gamma x}{2 a \gamma },\frac {b \log (\text {sech}(\gamma z))}{c \gamma }+\frac {\log (\cosh (\beta y))}{\beta }\right )+\frac {p \log (-\sinh (\lambda x))}{a \lambda }+\frac {q \log (\cosh (\beta y))}{b \beta }\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+ c*coth(gamma*z)*diff(w(x,y,z),z)=p*coth(lambda*x)+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = \frac {f_{1} \left (\frac {x b \beta -a \ln \left (\cosh \left (\beta y \right )\right )}{b \beta }, \frac {-c \gamma \ln \left ({\mathrm e}^{2 \beta y}+1\right )+\ln \left (\cosh \left (\gamma z \right )\right ) b \beta +c \gamma \left (\beta y +\ln \left (2\right )\right )}{\beta c \gamma }\right ) b \beta \lambda a +\ln \left (\cosh \left (\beta y \right )\right ) q \lambda a +p \ln \left (\sinh \left (\lambda x \right )\right ) b \beta }{b \beta \lambda a}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.7.10.6 [1657] Problem 6

problem number 1657

Added June 20, 2019.

Problem Chapter 7.4.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a_1 \coth ^{n_1}(\lambda _1 x) w_x + b_1 \coth ^{m_1}(\beta _1 y) w_y + c_1 \coth ^{k_1}(\gamma _1 z) w_z = a_2 \coth ^{n_2}(\lambda _2 x) + b_2 \coth ^{m_2}(\beta _2 y) w_y + c_2 \coth ^{k_2}(\gamma _2 z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a1*Coth[lambda1*x]^n1*D[w[x, y,z], x] + b1*Coth[beta1*x]^m1*D[w[x, y,z], y] +  c1*Coth[gamma1*x]^k1*D[w[x,y,z],z]== a2*Coth[lambda1*x]^n2 + b2*Coth[beta2*x]^m2 +  c2*Coth[gamma2*x]^k2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to \int _1^x\frac {\coth ^{-\text {n1}}(\text {lambda1} K[3]) \left (\text {c2} \coth ^{\text {k2}}(\text {gamma2} K[3])+\text {b2} \coth ^{\text {m2}}(\text {beta2} K[3])+\text {a2} \coth ^{\text {n2}}(\text {lambda1} K[3])\right )}{\text {a1}}dK[3]+c_1\left (y-\int _1^x\frac {\text {b1} \coth ^{\text {m1}}(\text {beta1} K[1]) \coth ^{-\text {n1}}(\text {lambda1} K[1])}{\text {a1}}dK[1],z-\int _1^x\frac {\text {c1} \coth ^{\text {k1}}(\text {gamma1} K[2]) \coth ^{-\text {n1}}(\text {lambda1} K[2])}{\text {a1}}dK[2]\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a1*coth(lambda1*x)^n1*diff(w(x,y,z),x)+ b1*coth(beta1*x)^m1*diff(w(x,y,z),y)+ c1*coth(gamma1*x)^k1*diff(w(x,y,z),z)=a2*coth(lambda1*x)^n2 + b2*coth(beta2*x)^m2 +  c2*coth(gamma2*x)^k2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = \frac {\int \left (\operatorname {a2} \coth \left (\lambda \operatorname {1} x \right )^{\operatorname {n2}}+\operatorname {b2} \coth \left (\beta \operatorname {2} x \right )^{\operatorname {m2}}+\operatorname {c2} \coth \left (\gamma \operatorname {2} x \right )^{\operatorname {k2}}\right ) \coth \left (\lambda \operatorname {1} x \right )^{-\operatorname {n1}}d x}{\operatorname {a1}}+f_{1} \left (-\frac {\operatorname {b1} \int \coth \left (\beta \operatorname {1} x \right )^{\operatorname {m1}} \coth \left (\lambda \operatorname {1} x \right )^{-\operatorname {n1}}d x}{\operatorname {a1}}+y , -\frac {\operatorname {c1} \int \coth \left (\gamma \operatorname {1} x \right )^{\operatorname {k1}} \coth \left (\lambda \operatorname {1} x \right )^{-\operatorname {n1}}d x}{\operatorname {a1}}+z \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________