Added June 2, 2019.
From example 3.5.2, page 211 nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[u[x, y], x] + y*D[u[x, y], y] ==n*u[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=x*diff(u(x,y),x)+y*diff(u(x,y),y)=n*u(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,y))),output='realtime'));
Hand solution
Solve
Using the Lagrange-charpit method
The first pair of equations gives
And \(\frac {dx}{x}=\frac {du}{nu}\) gives
Since \(C_{3}=G\left ( C_{1}\right ) \) then \(\frac {x^{n}}{u}=G\left ( \frac {x}{y}\right ) \) or \(u=x^{n}G^{-1}\left ( \frac {x}{y}\right ) \). Let \(G^{-1}=F\). Then the solution
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________