Added May 31, 2019.
Problem Chapter 6.7.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCot[lambda*x]^n*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccot(lambda*x)^n*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCot[lambda*x]^n*ArcCot[beta*y]^m*ArcCot[gamma*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccot(lambda*x)^n*arccot(beta*y)^m*arccot(gamma1*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*x]^n*D[w[x, y,z], y] +c*ArcCot[beta*x]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*x)^n*diff(w(x,y,z),y)+c*arccot(beta*x)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*x]^n*D[w[x, y,z], y] +c*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*x)^n*diff(w(x,y,z),y)+c*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*y]^n*D[w[x, y,z], y] +c*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*y)^n*diff(w(x,y,z),y)+c*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________