Added May 18, 2019.
Problem Chapter 6.3.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*y*Exp[alpha*x]*D[w[x, y,z], x] + b*Exp[beta*y]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*y*exp(alpha*x)*diff(w(x,y,z),x)+b*exp(beta*y)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*y*Exp[alpha*x]*D[w[x, y,z], x] + b*Exp[beta*y]*D[w[x, y,z], y] +c*z*Exp[gamma*z]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := a*y*exp(alpha*x)*diff(w(x,y,z),x)+b*exp(beta*y)*diff(w(x,y,z),y)+c*z*exp(gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( y^2+ a*Exp[alpha*x]*(alpha-a*Exp[alpha*x]))*D[w[x, y,z], y] +(z^2 +b*z +c*Exp[beta*x]*(beta - b -c*Exp[beta*x]))*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+( y^2+ a*exp(alpha*x)*(alpha-a*exp(alpha*x)))*diff(w(x,y,z),y)+(z^2 +b*z +c*exp(beta*x)*(beta - b -c*exp(beta*x)))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( y^2+ b*y + a*Exp[alpha*x]*(alpha-b-a*Exp[alpha*x]))*D[w[x, y,z], y] +(z^2 +c*Exp[beta*x]*(z-k)-k^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+( y^2+ b*y+a*exp(alpha*x)*(alpha-b-a*exp(alpha*x)))*diff(w(x,y,z),y)+(z^2 +c*exp(beta*x)*(z-k)-k^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( y^2+ b*y + a*Exp[alpha*x]*(y-b)-b^2)*D[w[x, y,z], y] +(z^2 +c*(x*z-1)*Exp[beta*x])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+( y^2+ b*y+a*exp(alpha*x)*(y-b)-b^2)*diff(w(x,y,z),y)+(z^2 +c*(x*z-1)*exp(beta*x))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( y^2- a*Exp[alpha*x]*(x*y-1))*D[w[x, y,z], y] +(c*Exp[beta*x]*z^2+b*Exp[-beta*x])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+( y^2- a*exp(alpha*x)*(x*y-1))*diff(w(x,y,z),y)+(c*exp(beta*x)*z^2+b*exp(-beta*x))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( a*y^2- a*Exp[alpha*x]+ b * Exp[-alpha*x])*D[w[x, y,z], y] +(d*Exp[beta*x]*z^2+c*Exp[gamma*x]*(gamma- c*d*Exp[(beta+gamma)*x]))*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+( a*y^2- a*exp(alpha*x)+ b * exp(-alpha*x))*diff(w(x,y,z),y)+(d*exp(beta*x)*z^2+c*exp(gamma*x)*(gamma- c*d*exp((beta+gamma)*x)))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (b*Exp[alpha*x]*y^2 + a*Exp[beta*x]*(beta- a*b*Exp[(alpha+beta)*x]))*D[w[x, y,z], y] +(c*z^2*Exp[gamma*x]+ d*z + k*Exp[-gamma*x])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+ (b*exp(alpha*x)*y^2 + a*exp(beta*x)*(beta- a*b*exp((alpha+beta)*x)))*diff(w(x,y,z),y)+(c*z^2*exp(gamma*x)+ d*z + k*exp(-gamma*x))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
time expired
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a*Exp[alpha*x]*y^2 + b*y + c*Exp[alpha*x])*D[w[x, y,z], y] +(Exp[beta*x]*z^2+ d*Exp[gamma*x]*(z+beta*Exp[-beta*x]))*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y,z),x)+ (a*exp(alpha*x)*y^2 + b*y + c*exp(alpha*x))*diff(w(x,y,z),y)+(exp(beta*x)*z^2+ d*exp(gamma*x)*(z+beta*exp(-beta*x)))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( Exp[alpha*x]*y^2 + a*y*Exp[beta*x] + a*alpha*Exp[(beta-alpha)*x])*D[w[x, y,z], y] +(gamma*Exp[gamma*x]*z^2+ b*Exp[delta*x]*(z+Exp[-gamma*x]))*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y,z),x)+ ( exp(alpha*x)*y^2 + a*y*exp(beta*x) + a*alpha*exp((beta-alpha)*x))*diff(w(x,y,z),y)+(gamma*exp(gamma*x)*z^2+ b*exp(delta*x)*(z+exp(-gamma*x)))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + ( alpha*Exp[alpha*x]*y^2 + a*Exp[beta*x]*(y+Exp[-alpha*x]))*D[w[x, y,z], y] +(Exp[gamma*x]*(z-b*Exp[delta*x])^2+b*delta*Exp[delta*x])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y,z),x)+ ( alpha*exp(alpha*x)*y^2 + a*exp(beta*x)*(y+exp(-alpha*x)))*diff(w(x,y,z),y)+(exp(gamma*x)*(z-b*exp(delta*x))^2+b*delta*exp(delta*x))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] + ( a1*Exp[alpha*x]*y^2 + beta*y+ a1*b2^2*x^(2*beta)*Exp[alpha*x])*D[w[x, y,z], y] +(a2*x^(2*n)*z^2*Exp[lamba*x]+(b2*x^n*Exp[lambda*x] - n)*z + c*Exp[lambda*x])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := x*diff(w(x,y,z),x)+ ( a1*exp(alpha*x)*y^2 + beta*y+ a1*b2^2*x^(2*beta)*exp(alpha*x))*diff(w(x,y,z),y)+(a2*x^(2*n)*z^2*exp(lamba*x)+(b2*x^n*exp(lambda*x) - n)*z + c*exp(lambda*x))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +( a1*Exp[lambda1*x]*y + b1*Exp[beta1*x]*y^k)*D[w[x, y,z], y] +(a2*Exp[lamba2*x]*z + b2*Exp[beta1*x]*z^m) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+ (a1*exp(lambda1*x)*y + b1*exp(beta1*x)*y^k)*diff(w(x,y,z),y)+(a2*exp(lamba2*x)*z + b2*exp(beta1*x)*z^m)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +( a1*Exp[beta1*x]*y + b1*Exp[gamma1*x]*y^k)*D[w[x, y,z], y] +(a2*Exp[beta2*x] + b2*Exp[gamma1*x+lambda*z]) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y,z),x)+ (a1*exp(beta1*x)*y + b1*exp(gamma1*x)*y^k)*diff(w(x,y,z),y)+(a2*exp(beta2*x)+ b2*exp(gamma1*x+lambda*z))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +( a1*x^n+b1*x^m*Exp[lambda*y])*D[w[x, y,z], y] +(a2*x^k+b2*x^2*Exp[beta*z]) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+ ( a1*x^n+b1*x^m*exp(lambda*y))*diff(w(x,y,z),y)+(a2*x^k+b2*x^2*exp(beta*z)) *diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.16, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*Exp[lambda*y] + b*x*y^m)*D[w[x, y,z], x] +Exp[mu*y]*D[w[x, y,z], y] +(c*y^L*z^k+d*y^p*z) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*exp(lambda*y) + b*x*y^m)*diff(w(x,y,z),x)+ exp(mu*y)*diff(w(x,y,z),y)+(c*y^L*z^k+d*y^p*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.17, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (y^2 + 2*a*alpha*Exp[alpha*x^2]-a^2*Exp[2*alpha*x^2] )*D[w[x, y,z], y] +( c*Exp[-2*beta*x^2]*z^2 + 2*beta*x*z + b^2*c)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+ (y^2 + 2*a*alpha*exp(alpha*x^2)-a^2*exp(2*alpha*x^2) )*diff(w(x,y,z),y)+( c*exp(-2*beta*x^2)*z^2 + 2*beta*x*z + b^2*c)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added May 18, 2019.
Problem Chapter 6.3.2.18, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a*Exp[2*alpha*x^2]*y^2 + 2*alpha*x*y + a*b^2 )*D[w[x, y,z], y] +( c*x^beta*z^2 + 2*gamma*x*z + c*d^2*x^beta*Exp[2*gamma*x^2])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y,z),x)+ (a*exp(2*alpha*x^2)*y^2 + 2*alpha*x*y + a*b^2 )*diff(w(x,y,z),y)+( c*x^beta*z^2 + 2*gamma*x*z + c*d^2*x^beta*exp(2*gamma*x^2))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________