Added April 15, 2019.
Problem Chapter 6.2.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = 2*b^2*x*z*D[w[x, y,z], x] + b*y*(b^2*z^2 +1)*D[w[x, y,z], y] + a*x*y*(b*z +1)^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := 2*b^2*x*z*diff(w(x,y,z),x)+b*y*(b^2*z^2 +1)*diff(w(x,y,z),y)+a*x*y*(b*z +1)^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*x*y^2*D[w[x, y,z], x] + 2*b*c*y^3*D[w[x, y,z], y] + 2*(c*y*z-a*x^2)^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*x*y^2*diff(w(x,y,z),x)+2*b*c*y^3*diff(w(x,y,z),y)+2*(c*y*z-a*x^2)^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*x*y^2*D[w[x, y,z], x] + a*c^2*x*z^2*D[w[x, y,z], y] - a*b*x*y^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*x*y^2*diff(w(x,y,z),x)+a*c^2*x*z^2*diff(w(x,y,z),y)- a*b*x*y^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*(b*y^2-c*z^2)*D[w[x, y,z], x] + y*(c*z^2-a*x^2)*D[w[x, y,z], y] + z*(a*x^2-b*y^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde :=x*(b*y^2-c*z^2)*diff(w(x,y,z),x)+ y*(c*z^2-a*x^2)*diff(w(x,y,z),y) + z*(a*x^2-b*y^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = b*y*(3*a*x^2+ b*y^2+c*z^2)*D[w[x, y,z], x] - 2*a*x*(a*x^2+c*z^2)*D[w[x, y,z], y] + 2*a*b*x*y*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := b*y*(3*a*x^2+ b*y^2+c*z^2)*diff(w(x,y,z),x)- 2*a*x*(a*x^2+c*z^2)*diff(w(x,y,z),y) + 2*a*b*x*y*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = b*(a*(a^2*x^2+b^2*y^2-1)*x+ b*y )*D[w[x, y,z], x] +a*(b*(a^2*x^2+b^2*y^2-1)*y - a*x)*D[w[x, y,z], y] + 2*a*b*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := b*(a*(a^2*x^2+b^2*y^2-1)*x+ b*y )*diff(w(x,y,z),x)+a*(b*(a^2*x^2+b^2*y^2-1)*y - a*x)*diff(w(x,y,z),y) + 2*a*b*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*(b^3*y^3 - 2*a^3*x^3)*D[w[x, y,z], x] +y*(2*b^3*y^3 -a^3*x^3)*D[w[x, y,z], y] +9*z*(a^3*x^3-b^3*y^3)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := x*(b^3*y^3 - 2*a^3*x^3)*diff(w(x,y,z),x)+y*(2*b^3*y^3 -a^3*x^3)*diff(w(x,y,z),y) + 9*z*(a^3*x^3-b^3*y^3)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*x^2*(a*b*x*y-c^2*z^2)*D[w[x, y,z], x] +a*x*y*(a*b*x*y-c^2*z^2)*D[w[x, y,z], y] +b*y*z*(b*c*y*z+2*a^2*x^2) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := a*x^2*(a*b*x*y-c^2*z^2)*diff(w(x,y,z),x)+a*x*y*(a*b*x*y-c^2*z^2)*diff(w(x,y,z),y) + b*y*z*(b*c*y*z+2*a^2*x^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*(c*z^4 - b*y^4)*D[w[x, y,z], x] +y*(a*x^4-2*c*z^4)*D[w[x, y,z], y] +z*(2*b*y^4-a*x^4) *D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := x*(c*z^4 - b*y^4)*diff(w(x,y,z),x)+y*(a*x^4-2*c*z^4)*diff(w(x,y,z),y) + z*(2*b*y^4-a*x^4)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] +y*D[w[x, y,z], y] +a*Sqrt[x^2+y^2]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y,z),x)+y*diff(w(x,y,z),y) + a*sqrt(x^2+y^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] +y*D[w[x, y,z], y] +(z-a*Sqrt[x^2+y^2+z^2])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y,z),x)+y*diff(w(x,y,z),y) + (z-a*sqrt(x^2+y^2+z^2))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = z*Sqrt[y^2+z^2]*D[w[x, y,z], x] +a*z*Sqrt[x^2+z^2]*D[w[x, y,z], y] -(x*Sqrt[y^2+z^2]+a*y*Sqrt[x^2+z^2])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := z*sqrt(y^2+z^2)*diff(w(x,y,z),x)+a*z*sqrt(x^2+z^2)*diff(w(x,y,z),y) -(x*sqrt(y^2+z^2)+a*y*sqrt(x^2+z^2))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 15, 2019.
Problem Chapter 6.2.3.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Where
Mathematica ✗
ClearAll["Global`*"]; f[t_]:= a[6]*t^6+a[5]*t^5+a[4]*t^4+a[3]*t^3+a[2]*t^2+a[1]*t+a[0]; pde = (y-z)*Sqrt[f[x]]*D[w[x, y,z], x] +(z-x)*Sqrt[f[y]]*D[w[x, y,z], y] +(x-y)*Sqrt[f[z]]*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; f := t-> a[6]*t^6+a[5]*t^5+a[4]*t^4+a[3]*t^3+a[2]*t^2+a[1]*t+a[0]; pde := (y-z)*sqrt(f(x))*diff(w(x,y,z),x)+(z-x)*sqrt(f(y))*diff(w(x,y,z),y)+(x-y)*sqrt(f(z))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
detected error
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________