Added April 13, 2019.
Problem Chapter 6.2.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y) + c*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
Hand solution
Solve
Using Lagrange-charpit
From first two pair of equations, integrating gives \(\frac {b}{a}x-y=C_{1}\) and from \(\frac {dx}{a}=\frac {dz}{c}\) by Integrating gives \(\frac {c}{a}x-z=C_{2}\). Since \(dw=0\) then \(w=C_{3}\). Where \(C_{1},C_{2},C_{3}\) are constants. But \(C_{3}=F\left ( C_{1},C_{2}\right ) \) where \(F\) is arbitrary function. Hence
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*x*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+ a*x*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
Hand solution
Solve
Using Lagrange-charpit
From first two pair of equations, integrating gives
And from \(dx=\frac {dz}{by}\) we obtain
But from (1) \(y=\frac {ax^{2}}{2}-C_{1}\) and the above becomes
Now we can integrate and the result is
Using (1) again the above becomes
Since \(dw=0\) then \(w=C_{3}\). Where \(C_{1},C_{2},C_{3}\) are constants. But \(C_{3}=F\left ( C_{1},C_{2}\right ) \) where \(F\) is arbitrary function. Hence
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y) + c*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
Hand solution
Solve
Using Lagrange-charpit
From first two pair of equations, integrating gives
And from \(\frac {dx}{a}=\frac {dz}{cz}\) we obtain
Since \(dw=0\) then \(w=C_{3}\). Where \(C_{1},C_{2},C_{3}\) are constants. But \(C_{3}=F\left ( C_{1},C_{2}\right ) \) where \(F\) is arbitrary function. Hence
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*z*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
Hand solution
Solve
Using Lagrange-charpit
Starting with \(\frac {dy}{az}=\frac {dz}{by}\) or \(\frac {b}{a}ydy=zdz\) and integrating gives
Now we can either consider \(dx=\frac {dz}{by}\) or \(dx=\frac {dy}{az}\). Both will give valid solutions. Lets try both to see.
case \(dx=\frac {dz}{by}\)
From (1) solving for \(y\) in terms of \(z\) gives
Hence \(dx=\frac {dz}{by}\) becomes \(bdx=\frac {dz}{\sqrt {\frac {a}{b}C_{1}+\frac {a}{b}z^{2}}}\). Integrating gives
Using (1) in the above gives
Since \(dw=0\) then \(w=C_{3}\). Where \(C_{1},C_{2},C_{3}\) are constants. But \(C_{3}=F\left ( C_{1},C_{2}\right ) \) where \(F\) is arbitrary function. Hence
From (1) we solve for \(z\) in terms of \(y\). This gives \(z^{2}=\frac {b}{a}y^{2}-C_{1}\) or \(z=\sqrt {\frac {b}{a}y^{2}-C_{1}}\), taking the positive root only. Hence\(\ dx=\frac {dy}{az}\) becomes\(\ adx=\frac {dy}{\sqrt {\frac {b}{a}y^{2}-C_{1}}}\) or \(adx=\sqrt {\frac {a}{b}}\frac {dy}{\sqrt {y^{2}-\frac {a}{b}C_{1}}}\) Integrating give
Using (1) in the above gives
Hence
Since \(dw=0\) then \(w=C_{3}\). Where \(C_{1},C_{2},C_{3}\) are constants. But \(C_{3}=F\left ( C_{1},C_{2}\right ) \) where \(F\) is arbitrary function. Hence
Both (2,3) are valid solutions.
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] + a*y*D[w[x, y,z], y] +b*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y,z),x)+ a*y*diff(w(x,y,z),y) + b*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] + a*z*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y) + b*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y,z], x] + (a*x+b*y)*D[w[x, y,z], y] +(alpha*x+beta*y+gamma*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y,z),x)+ (a*x+b*y)*diff(w(x,y,z),y) + (alpha*x+beta*y+gamma*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*b*x*D[w[x, y,z], x] + (a*y+b*z)*(b*D[w[x, y,z], y] -a*D[w[x,y,z],z])==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := a*b*x*diff(w(x,y,z),x)+ (a*y+b*z)*(b*diff(w(x,y,z),y) - a*diff(w(x,y,z),z))= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*b*x*D[w[x, y,z], x] + b*(a*y+b*z)*D[w[x, y,z], y] +a*(a*y-b*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*b*x*diff(w(x,y,z),x)+ b*(a*y+b*z)*diff(w(x,y,z),y) + a*(a*y-b*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b^2*c*y*D[w[x, y,z], x] + a^2*c*x*D[w[x, y,z], y] -a*b*(a*x+b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b^2*c*y*diff(w(x,y,z),x)+ a^2*c*x*diff(w(x,y,z),y) - a*b*(a*x+b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = c*z*D[w[x, y,z], x] + (a*x+b*y)*D[w[x, y,z], y] +(a*x+b*y+c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := c*z*diff(w(x,y,z),x)+ (a*x+b*y)*diff(w(x,y,z),y) + (a*x+b*y+c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = b^2*c*z*D[w[x, y,z], x] - a^2*c*x*D[w[x, y,z], y] +a*b^2*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := b^2*c*z*diff(w(x,y,z),x)-a^2*c*x*diff(w(x,y,z),y) + a*b^2*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = (x+a)*D[w[x, y,z], x] + (y+b)*D[w[x, y,z], y] +(z+c)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := (x+a)*diff(w(x,y,z),x)+(y+b)*diff(w(x,y,z),y) + (z+c)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = 2*b*c*(a*x-b*y)*D[w[x, y,z], x] -a*c*(a*x-b*y-c*z)*D[w[x, y,z], y] - a*b*(a*x -b*y-3*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✗
restart; pde := 2*b*c*(a*x-b*y)*diff(w(x,y,z),x)-a*c*(a*x-b*y-c*z)*diff(w(x,y,z),y)- a*b*(a*x -b*y-3*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*(y-z)*D[w[x, y,z], x] +a*c*(z-x)*D[w[x, y,z], y] + a*b*(x -y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*(y-z)*diff(w(x,y,z),x)+a*c*(z-x)*diff(w(x,y,z),y)+ a*b*(x -y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.16, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*(b*y-2*c*z)*D[w[x, y,z], x] +a*c*(3*c*z-a*x)*D[w[x, y,z], y] + a*b*(2*a*x -3*b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*(b*y-2*c*z)*diff(w(x,y,z),x)+a*c*(3*c*z-a*x)*diff(w(x,y,z),y)+ a*b*(2*a*x-3*b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.17, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = 2*b*c*(b*y-c*z)*D[w[x, y,z], x] -a*c*(4*a*x-3*b*y-c*z)*D[w[x, y,z], y] + 3*a*b*(4*a*x-b*y-3*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
$Aborted
Maple ✗
restart; pde := 2*b*c*(b*y-c*z)*diff(w(x,y,z),x)-a*c*(4*a*x-3*b*y-c*z)*diff(w(x,y,z),y)+ 3*a*b*(4*a*x-b*y-3*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.18, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = (a*x+y-z)*D[w[x, y,z], x] -(x+a*y-z)*D[w[x, y,z], y] + (a-1)*(y-x)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✗
restart; pde := (a*x+y-z)*diff(w(x,y,z),x)-(x+a*y-z)*diff(w(x,y,z),y)+ (a-1)*(y-x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.19, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = 2*b*c*(3*a*x-2*b*y+c*z)*D[w[x, y,z], x] -2*a*c(2*a*x-5*b*y+3*c*z)*D[w[x, y,z], y] + a*b(2*a*x-6*b*y+11*c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := 2*b*c*(3*a*x-2*b*y+c*z)*diff(w(x,y,z),x)-2*a*c*(2*a*x-5*b*y+3*c*z)*diff(w(x,y,z),y)+ a*b*(2*a*x-6*b*y+11*c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.20, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (A*x+c*y+b*z)*D[w[x, y,z], x] +(c*x+B*y+a*z)*D[w[x, y,z], y] +(b*x+a*y+C1*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := (A*x+c*y+b*z)*diff(w(x,y,z),x)+(c*x+B*y+a*z)*diff(w(x,y,z),y)+ (b*x+a*y+C1*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 13, 2019.
Problem Chapter 6.2.1.21, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a1*x+b1*y+c1*z+d1)*D[w[x, y,z], x] +(a2*x+b2*y+c2*z+d2)*D[w[x, y,z], y] +(a3*x+b3*y+c3*z+d3)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := (a1*x+b1*y+c1*z+d1)*diff(w(x,y,z),x)+(a2*x+b2*y+c2*z+d2)*diff(w(x,y,z),y)+ (a3*x+b3*y+c3*z+d3)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________