Added March 10, 2019.
Problem Chapter 4.8.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (f[x] + g[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =(f(x)+g(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == f[x]*g[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+a*diff(w(x,y),y) = f(x)*g(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y + f[x])*D[w[x, y], y] == g[x]*h[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(a*y+f(x))*diff(w(x,y),y) = g(x)*h(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f[x]*D[w[x, y], x] + g[y]*D[w[x, y], y] == (h1[x] + h2[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := f(x)*diff(w(x,y),x)+g(y)*diff(w(x,y),y) = (h1(x)+h2(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f1[x]*D[w[x, y], x] + (f2[x] + f3[x]*y^k)*D[w[x, y], y] == g[x]*h[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := f1(x)*diff(w(x,y),x)+(f2(x)+f3(x)*y^k)*diff(w(x,y),y) = g(x)*h(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f1[x]*g1[y]*D[w[x, y], x] + f2[x]*g2[y]*D[w[x, y], y] == h1[x]*h2[y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := f1(x)*g1(y)*diff(w(x,y),x)+f2(x)*g2(y)*diff(w(x,y),y) = h1(x)*h2(y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 4.8.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = f1[x]*g1[y]*D[w[x, y], x] + f2[x]*g2[y]*D[w[x, y], y] == (h1[x] + h2[y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := f1(x)*g1(y)*diff(w(x,y),x)+f2(x)*g2(y)*diff(w(x,y),y) = (h1(x)+h2(y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________