6.4.15 6.1

6.4.15.1 [1114] Problem 1
6.4.15.2 [1115] Problem 2
6.4.15.3 [1116] Problem 3
6.4.15.4 [1117] Problem 4
6.4.15.5 [1118] Problem 5

6.4.15.1 [1114] Problem 1

problem number 1114

Added March 9, 2019.

Problem Chapter 4.6.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \sin (\lambda x+\mu y) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sin[lambda*x + mu*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{-\frac {c \cos (\lambda x+\mu y)}{a \lambda +b \mu }}\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*sin(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {a y -x b}{a}\right ) {\mathrm e}^{-\frac {c \cos \left (\lambda x +y \mu \right )}{a \lambda +b \mu }}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.15.2 [1115] Problem 2

problem number 1115

Added March 9, 2019.

Problem Chapter 4.6.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = (c \sin (\lambda x)+ k \sin (\mu y) ) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Sin[lambda*x] + k*Sin[mu*y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{-\frac {c \cos (\lambda x)}{a \lambda }-\frac {k \cos (\mu y)}{b \mu }}\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c*sin(lambda*x)+k*sin(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {a y -x b}{a}\right ) {\mathrm e}^{\frac {-k a \cos \left (\mu y \right ) \lambda -c \cos \left (\lambda x \right ) \mu b}{a \lambda \mu b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.15.3 [1116] Problem 3

problem number 1116

Added March 9, 2019.

Problem Chapter 4.6.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \sin (\lambda x+ \mu y) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Sin[lambda*x + mu*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) \exp \left (\int _1^xa \sin \left (\left (\lambda +\frac {\mu y}{x}\right ) K[1]\right )dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  x*diff(w(x,y),x)+ y*diff(w(x,y),y) = a*x*sin(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {y}{x}\right ) {\mathrm e}^{-\frac {a \cos \left (\lambda x +\mu y \right ) x}{\lambda x +\mu y}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.15.4 [1117] Problem 4

problem number 1117

Added March 9, 2019.

Problem Chapter 4.6.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sin ^n(\lambda x) w_y = (c \sin ^m(\mu x)+s \sin ^k(\beta y)) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Sin[lambda*x]^n*D[w[x, y], y] == (c*Sin[mu*x]^m + s*Sin[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b \sqrt {\cos ^2(\lambda x)} \sec (\lambda x) \sin ^{n+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda x)\right )}{a \lambda n+a \lambda }\right ) \exp \left (\int _1^x\frac {s \sin ^k\left (\frac {\beta \left (-b \sqrt {\cos ^2(\lambda x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda x)\right ) \sec (\lambda x) \sin ^{n+1}(\lambda x)+b \sqrt {\cos ^2(\lambda K[1])} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{n+1}(\lambda K[1])+a \lambda (n+1) y\right )}{a \lambda (n+1)}\right )+c \sin ^m(\mu K[1])}{a}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*sin(lambda*x)^n*diff(w(x,y),y) = (c*sin(mu*x)^m+s*sin(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {b \int \sin \left (\lambda x \right )^{n}d x}{a}+y \right ) {\mathrm e}^{\frac {\int _{}^{x}\left (c \sin \left (\mu \textit {\_b} \right )^{m}+s {\sin \left (\frac {\beta \left (-b \int \sin \left (\lambda x \right )^{n}d x +b \int \sin \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} +y a \right )}{a}\right )}^{k}\right )d \textit {\_b}}{a}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.15.5 [1118] Problem 5

problem number 1118

Added March 9, 2019.

Problem Chapter 4.6.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sin ^n(\lambda y) w_y = (c \sin ^m(\mu x)+s \sin ^k(\beta y)) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Sin[lambda*y]^n*D[w[x, y], y] == (c*Sin[mu*x]^m + s*Sin[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt {\cos ^2(\lambda y)} \sec (\lambda y) \sin ^{1-n}(\lambda y) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda y)\right )}{\lambda -\lambda n}-\frac {b x}{a}\right ) \exp \left (\int _1^y\frac {\sin ^{-n}(\lambda K[1]) \left (s \sin ^k(\beta K[1])+c \sin ^m\left (\frac {-a \mu \sqrt {\cos ^2(\lambda y)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda y)\right ) \sec (\lambda y) \sin ^{1-n}(\lambda y)+a \mu \sqrt {\cos ^2(\lambda K[1])} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{1-n}(\lambda K[1])+b \lambda \mu x-b \lambda \mu n x}{b \lambda -b \lambda n}\right )\right )}{b}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*sin(lambda*y)^n*diff(w(x,y),y) = (c*sin(mu*x)^m+s*sin(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {a \int \sin \left (\lambda y \right )^{-n}d y}{b}+x \right ) {\mathrm e}^{\frac {\int _{}^{y}\left (c {\sin \left (\frac {\mu \left (a \int \sin \left (\lambda \textit {\_b} \right )^{-n}d \textit {\_b} -a \int \sin \left (\lambda y \right )^{-n}d y +x b \right )}{b}\right )}^{m}+s \sin \left (\beta \textit {\_b} \right )^{k}\right ) \sin \left (\lambda \textit {\_b} \right )^{-n}d \textit {\_b}}{b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________