6.4.11 4.4

6.4.11.1 [1091] Problem 1
6.4.11.2 [1092] Problem 2
6.4.11.3 [1093] Problem 3
6.4.11.4 [1094] Problem 4
6.4.11.5 [1095] Problem 5

6.4.11.1 [1091] Problem 1

problem number 1091

Added Feb. 23, 2019.

Problem Chapter 4.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = (c \coth (\lambda x) + k \coth (\mu y)) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Coth[lambda*x] + k*Coth[mu*y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \sinh ^{\frac {c}{a \lambda }}(\lambda x) \sinh ^{\frac {k}{b \mu }}(\mu y) c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   (c*coth(lambda*x) + k*coth(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {y a -b x}{a}\right ) \sinh \left (\lambda x \right )^{\frac {c}{a \lambda }} \sinh \left (\mu y \right )^{\frac {k}{\mu b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.11.2 [1092] Problem 2

problem number 1092

Added Feb. 23, 2019.

Problem Chapter 4.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \coth (\lambda x +\mu y) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Coth[lambda*x + mu*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) \sinh ^{\frac {c}{a \lambda +b \mu }}(\lambda x+\mu y)\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   c*coth(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {y a -b x}{a}\right ) \sinh \left (\lambda x +\mu y \right )^{\frac {c}{a \lambda +b \mu }}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.11.3 [1093] Problem 3

problem number 1093

Added Feb. 23, 2019.

Problem Chapter 4.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \coth (\lambda x +\mu y) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Coth[lambda*x + mu*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\frac {y}{x}\right ) \sinh ^{\frac {a x}{\lambda x+\mu y}}(\lambda x+\mu y)\right \}\right \}\]

Maple

restart; 
pde := x*diff(w(x,y),x)+y*diff(w(x,y),y) =   a*x*coth(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (\frac {y}{x}\right ) \sinh \left (\lambda x +\mu y \right )^{\frac {a x}{\lambda x +\mu y}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.11.4 [1094] Problem 4

problem number 1094

Added Feb. 23, 2019.

Problem Chapter 4.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \coth ^n(\lambda x) w_y = (c \coth ^m(\mu x)+s \coth ^k(\beta y)) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Coth[lambda*x]^n*D[w[x, y], y] == (c*Coth[mu*x]^m + s*Coth[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b \coth ^{n+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},\coth ^2(\lambda x)\right )}{a \lambda n+a \lambda }\right ) \exp \left (\int _1^x\frac {s \coth ^k\left (\frac {\beta \left (-b \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},\coth ^2(\lambda x)\right ) \coth ^{n+1}(\lambda x)+a \lambda (n+1) y+b \coth ^{n+1}(\lambda K[1]) \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},\coth ^2(\lambda K[1])\right )\right )}{a \lambda (n+1)}\right )+c \coth ^m(\mu K[1])}{a}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x)+b*coth(lambda*x)^n*diff(w(x,y),y) =  (c*coth(mu*x)^m+s*coth(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {b \int \coth \left (\lambda x \right )^{n}d x}{a}+y \right ) {\mathrm e}^{\frac {\int _{}^{x}\left (c \coth \left (\mu \textit {\_b} \right )^{m}+s {\coth \left (\frac {\beta \left (-b \int \coth \left (\lambda x \right )^{n}d x +b \int \coth \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} +y a \right )}{a}\right )}^{k}\right )d \textit {\_b}}{a}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.4.11.5 [1095] Problem 5

problem number 1095

Added Feb. 23, 2019.

Problem Chapter 4.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \coth ^n(\lambda y) w_y = (c \coth ^m(\mu x)+s \coth ^k(\beta y)) w \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Coth[lambda*y]^n*D[w[x, y], y] == (c*Coth[mu*x]^m + s*Coth[beta*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\coth ^{1-n}(\lambda y) \operatorname {Hypergeometric2F1}\left (1,\frac {1-n}{2},\frac {3-n}{2},\coth ^2(\lambda y)\right )}{\lambda -\lambda n}-\frac {b x}{a}\right ) \exp \left (\int _1^y\frac {\left (s \coth ^k(\beta K[1])+c \coth ^m\left (\frac {-a \mu \operatorname {Hypergeometric2F1}\left (1,\frac {1-n}{2},\frac {3-n}{2},\coth ^2(\lambda y)\right ) \coth ^{1-n}(\lambda y)+b \lambda \mu x-b \lambda \mu n x+a \mu \coth ^{1-n}(\lambda K[1]) \operatorname {Hypergeometric2F1}\left (1,\frac {1-n}{2},\frac {3-n}{2},\coth ^2(\lambda K[1])\right )}{b \lambda -b \lambda n}\right )\right ) \coth ^{-n}(\lambda K[1])}{b}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x)+b*coth(lambda*y)^n*diff(w(x,y),y) =  (c*coth(mu*x)^m+s*coth(beta*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {a \int \coth \left (\lambda y \right )^{-n}d y}{b}+x \right ) {\mathrm e}^{\frac {\int _{}^{y}\left (c {\coth \left (\frac {\mu \left (a \int \coth \left (\lambda \textit {\_b} \right )^{-n}d \textit {\_b} -a \int \coth \left (\lambda y \right )^{-n}d y +x b \right )}{b}\right )}^{m}+s \coth \left (\beta \textit {\_b} \right )^{k}\right ) \coth \left (\lambda \textit {\_b} \right )^{-n}d \textit {\_b}}{b}}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________