Taken from Mathematica help pages
General solution for a quasilinear first-order PDE
Solve for \(u(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = 2*D[u[x, y], x] + 5*D[u[x, y], y] == u[x, y]^2 + 1; sol = AbsoluteTiming[TimeConstrained[Simplify[DSolve[pde, u[x, y], {x, y}]], 60*10]];
Maple ✓
restart; interface(showassumed=0); pde := 2* diff(u(x, y), x) + 5*diff(u(x, y), y) = u(x, y)^2 + 1; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde, u(x, y))),output='realtime'));
Hand solution
Solve for \(u\left ( x,y\right ) \) in \(2u_{x}+5u_{y}=u^{2}+1.\) Using the Lagrange-charpit method, the characteristic equations are
From the first pair of equation we obtain
Now we can pick the pair \(\frac {dy}{5}=\frac {du}{u^{2}+1}\) or \(\frac {dx}{2}=\frac {du}{u^{2}+1}\) to solve for \(u\). It does not matter which. Using
Integrating gives
\(C_{1}\) and \(C_{2}\) are always related by \(C_{2}=F\left ( C_{1}\right ) \) where \(F\) is arbitrary function. Hence
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________