Added Feb. 17, 2019.
Problem Chapter 4.2.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*x^3 + d*y^3)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*x^3+d*y^3)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*Sqrt[x^2 + y^2]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=x*diff(w(x,y),x)+y*diff(w(x,y),y) = a*sqrt(x^2+y^2)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*D[w[x, y], x] + x*y*D[w[x, y], y] == y^2*(a*x + b*y)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=x^2*diff(w(x,y),x)+x*y*diff(w(x,y),y) = y^2*(a*x+b*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*y*D[w[x, y], x] + a*x*y^2*D[w[x, y], y] == (b*x*y + c*x + d*y + k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=x^2*y*diff(w(x,y),x)+a*x*y^2*diff(w(x,y),y) =(b*x*y +c*x+ d*y + k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*y^2*D[w[x, y], x] + b*x^2*y*D[w[x, y], y] == (a*n*y^2 + b*m*x^2)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*x*y^2*diff(w(x,y),x)+b*x^2*y*diff(w(x,y),y) = (a*n*y^2+ b*m*x^2)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 17, 2019.
Problem Chapter 4.2.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x^3*D[w[x, y], x] + a*y^3*D[w[x, y], y] == x^2*(b*x + c*y)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=x^3*diff(w(x,y),x)+a*y^3*diff(w(x,y),y) = x^2*(b*x+c*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________