6.3.16 6.1

6.3.16.1 [936] Problem 1
6.3.16.2 [937] Problem 2
6.3.16.3 [938] Problem 3
6.3.16.4 [939] Problem 4
6.3.16.5 [940] Problem 5

6.3.16.1 [936] Problem 1

problem number 936

Added Feb. 11, 2019.

Problem Chapter 3.6.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b y^n w_y = c \sin (\lambda x) + k \sin (\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sin[lambda*x] + k*Sin[mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )-\frac {c \cos (\lambda x)}{a \lambda }-\frac {k \cos (\mu y)}{b \mu }\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x) +  b*diff(w(x,y),y) =  c*sin(lambda*x)+k*sin(mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = \frac {f_{1} \left (\frac {y a -b x}{a}\right ) \mu b a \lambda -k a \cos \left (\mu y \right ) \lambda -\cos \left (\lambda x \right ) c \mu b}{\mu b a \lambda }\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.16.2 [937] Problem 2

problem number 937

Added Feb. 11, 2019.

Problem Chapter 3.6.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b y^n w_y = c \sin (\lambda x+\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sin[lambda*x + mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to -\frac {c \cos (\lambda x+\mu y)}{a \lambda +b \mu }+c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x) +  b*diff(w(x,y),y) =  c*sin(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = -\frac {\cos \left (\lambda x +\mu y \right ) c}{\lambda a +\mu b}+f_{1} \left (\frac {y a -x b}{a}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.16.3 [938] Problem 3

problem number 938

Added Feb. 11, 2019.

Problem Chapter 3.6.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + y w_y = a x \sin (\lambda x+\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Sin[lambda*x + mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^xa \sin \left (\left (\lambda +\frac {\mu y}{x}\right ) K[1]\right )dK[1]+c_1\left (\frac {y}{x}\right )\right \}\right \}\]

Maple

restart; 
pde := x*diff(w(x,y),x) +  y*diff(w(x,y),y) =  a*x*sin(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = -\frac {a \cos \left (\lambda x +\mu y \right ) x}{\lambda x +\mu y}+f_{1} \left (\frac {y}{x}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.16.4 [939] Problem 4

problem number 939

Added Feb. 11, 2019.

Problem Chapter 3.6.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sin ^n(\lambda x) w_y = c\sin ^m(\mu x)+s \sin ^k(\beta y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Sin[lambda*x]^n*D[w[x, y], y] == c*Sin[mu*x]^m + s*Sin[beta*y]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^x\frac {s \sin ^k\left (\frac {\beta \left (-b \sqrt {\cos ^2(\lambda x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda x)\right ) \sec (\lambda x) \sin ^{n+1}(\lambda x)+b \sqrt {\cos ^2(\lambda K[1])} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{n+1}(\lambda K[1])+a \lambda (n+1) y\right )}{a \lambda (n+1)}\right )+c \sin ^m(\mu K[1])}{a}dK[1]+c_1\left (y-\frac {b \sqrt {\cos ^2(\lambda x)} \sec (\lambda x) \sin ^{n+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},\sin ^2(\lambda x)\right )}{a \lambda n+a \lambda }\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x) +  b*sin(lambda*x)^n*diff(w(x,y),y) =  c*sin(mu*x)^m+s*sin(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {b \int \sin \left (\lambda x \right )^{n}d x}{a}+y \right )+\frac {\int _{}^{x}\left (c \sin \left (\mu \textit {\_b} \right )^{m}+{\sin \left (\frac {\beta \left (b \int \sin \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} -b \int \sin \left (\lambda x \right )^{n}d x +y a \right )}{a}\right )}^{k} s \right )d \textit {\_b}}{a}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.16.5 [940] Problem 5

problem number 940

Added Feb. 11, 2019.

Problem Chapter 3.6.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \sin ^n(\lambda y) w_y = c\sin ^m(\mu x)+s \sin ^k(\beta y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Sin[lambda*y]^n*D[w[x, y], y] == c*Sin[mu*x]^m + s*Sin[beta*y]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^y\frac {\sin ^{-n}(\lambda K[1]) \left (s \sin ^k(\beta K[1])+c \sin ^m\left (\frac {-a \mu \sqrt {\cos ^2(\lambda y)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda y)\right ) \sec (\lambda y) \sin ^{1-n}(\lambda y)+a \mu \sqrt {\cos ^2(\lambda K[1])} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda K[1])\right ) \sec (\lambda K[1]) \sin ^{1-n}(\lambda K[1])+b \lambda \mu x-b \lambda \mu n x}{b \lambda -b \lambda n}\right )\right )}{b}dK[1]+c_1\left (\frac {\sqrt {\cos ^2(\lambda y)} \sec (\lambda y) \sin ^{1-n}(\lambda y) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(\lambda y)\right )}{\lambda -\lambda n}-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde := a*diff(w(x,y),x) +  b*sin(lambda*y)^n*diff(w(x,y),y) =  c*sin(mu*x)^m+s*sin(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = f_{1} \left (-\frac {a \int \sin \left (\lambda y \right )^{-n}d y}{b}+x \right )+\frac {\int _{}^{y}\sin \left (\lambda \textit {\_b} \right )^{-n} \left ({\sin \left (\frac {\mu \left (a \int \sin \left (\lambda \textit {\_b} \right )^{-n}d \textit {\_b} -a \int \sin \left (\lambda y \right )^{-n}d y +x b \right )}{b}\right )}^{m} c +s \sin \left (\beta \textit {\_b} \right )^{k}\right )d \textit {\_b}}{b}\]
Result has unresolved integrals

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________