6.3.14 5.2

6.3.14.1 [930] Problem 1
6.3.14.2 [931] Problem 2
6.3.14.3 [932] Problem 3

6.3.14.1 [930] Problem 1

problem number 930

Added Feb. 11, 2019.

Problem Chapter 3.5.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c x^n+ s \ln ^k(\lambda y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*x^n + s*Log[lambda*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )-\frac {x \left (-c x^n+n s+s\right )}{a (n+1)}+\frac {s y \log (\lambda y)}{b}\right \}\right \}\]

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) =  c*x^n+s*ln(lambda*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = \frac {\left (1+n \right ) \left (f_{1} \left (\frac {y a -b x}{a}\right ) b +s \left (\ln \left (\lambda y \right )-1\right ) y \right ) a +c \,x^{1+n} b}{a \left (1+n \right ) b}\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.14.2 [931] Problem 2

problem number 931

Added Feb. 11, 2019.

Problem Chapter 3.5.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a w_y = b y^2+c x^n y+ s \ln ^k(\lambda x) \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == b*y^2 + c*x^n*y + s*Log[lambda*x]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^x\left (s \log ^k(\lambda K[1])+b (y+a (K[1]-x))^2+c K[1]^n (y+a (K[1]-x))\right )dK[1]+c_1(y-a x)\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x) + a*diff(w(x,y),y) =  b*y^2+c*x^n*y+s*ln(lambda*x)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = \int _{}^{x}\left (s \ln \left (\lambda \textit {\_a} \right )^{k}+\textit {\_a}^{n +1} a c -c \left (a x -y \right ) \textit {\_a}^{n}+b \left (\left (x -\textit {\_a} \right ) a -y \right )^{2}\right )d \textit {\_a} +f_{1} \left (-a x +y \right )\]
Result has unresolved integrals

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.3.14.3 [932] Problem 3

problem number 932

Added Feb. 11, 2019.

Problem Chapter 3.5.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a w_y = b ln^k(\lambda x) \ln ^n(\beta y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == b*Log[lambda*x]^k*Log[beta*y]^n; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 
\[\left \{\left \{w(x,y)\to \int _1^xb \log ^k(\lambda K[1]) \log ^n(\beta (y+a (K[1]-x)))dK[1]+c_1(y-a x)\right \}\right \}\]

Maple

restart; 
pde := diff(w(x,y),x) + a*diff(w(x,y),y) =  b*ln(lambda*x)^k*ln(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 
\[w \left (x , y\right ) = b \int _{}^{x}\ln \left (\lambda \textit {\_a} \right )^{k} \ln \left (-\beta \left (\left (x -\textit {\_a} \right ) a -y \right )\right )^{n}d \textit {\_a} +f_{1} \left (-a x +y \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________