Added Feb. 9, 2019.
Problem Chapter 3.3.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*y*Exp[lambda*x] + k*x*Exp[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*y*exp(lambda*x)+k*x*exp(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*D[w[x, y], y] == a*x^k*Exp[lambda*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x) +a*diff(w(x,y),y) =a*x^k*exp(lambda*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y + b*Exp[lambda*x])*D[w[x, y], y] == c*Exp[beta*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x) +(a*y+b*exp(lambda*x))*diff(w(x,y),y) =c*exp(beta*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*y*Exp[lambda*x] + b*Exp[beta*x]*y^k)*D[w[x, y], y] == c*Exp[mu*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x) +(a*y*exp(lambda*x)+b*exp(beta*x)*y^k)*diff(w(x,y),y) =c*exp(mu*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^k + b*x^n*Exp[lambda*y])*D[w[x, y], y] == c*Exp[beta*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x) +(a*x^k+b*x^n*exp(lambda*y))*diff(w(x,y),y) =c*exp(beta*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Exp[lambda*x + mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) =a*x*exp(lambda *x+ mu* y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*y*Exp[lambda*x] + b*x*Exp[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x) +y*diff(w(x,y),y) =a*y*exp(lambda*x) + b*x*exp(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^k*D[w[x, y], x] + b*Exp[lambda*y]*D[w[x, y], y] == c*x^n + s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*x^k*diff(w(x,y),x) +b*exp(lambda*y)*diff(w(x,y),y) =c*x^n+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*y^k*D[w[x, y], x] + b*Exp[lambda*x]*D[w[x, y], y] == c*Exp[mu*x] + s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*y^k*diff(w(x,y),x) +b*exp(lambda*x)*diff(w(x,y),y) =c*exp(mu*x)+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*y^k*D[w[x, y], y] == c*x^n + s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*exp(lambda*x)*diff(w(x,y),x) +b*y^k*diff(w(x,y),y) = c*x^n+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.3.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*y]*D[w[x, y], x] + b*x^k*D[w[x, y], y] == c*Exp[mu*x] + s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*exp(lambda*y)*diff(w(x,y),x) +b*x^k*diff(w(x,y),y) = c*exp(mu*x)+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________