Added Feb. 7, 2019.
Problem 2.9.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + f[a*x + b*y + c]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ f(a*x+b*y+c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + f[y/x]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ f(y/x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*x^n + b] - a*n*x^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*x^n+b) - a*n*x^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*f[x^n*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ y*f(x^n*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = y^(m - 1)*D[w[x, y], x] + x^(n - 1)*f[a*x^n + b*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := y^(m-1)*diff(w(x,y),x)+ x^(n-1)*f(a*x^n+b*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[-(lambda*x)]*f[Exp[lambda*x]*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(-lambda*x)*f(exp(lambda*x)*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*y]*f[Exp[lambda*y]*x]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*y)*f(exp(lambda*y)*x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + y*f[Exp[alpha*x]*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ y*f(exp(alpha*x)*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + f[x^n*Exp[alpha*y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ f(x^n*exp(alpha*y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*x - beta*y]*f[a*Exp[lambda*x] + b*Exp[beta*y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*x-beta*y)*f(a*exp(lambda*x)+b*exp(beta*y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*Exp[lambda*x] + b] - a*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*exp(lambda*x)+b)-a * lambda*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = alpha*x*y*D[w[x, y], x] + (alpha*f[x^n*Exp[alpha*y]] - n*y)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := alpha*x*y*diff(w(x,y),x)+ (alpha*f(x^n*exp(alpha*y)) - n*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = m*x*Log[y]*D[w[x, y], x] + (y*f[x^n*y^m] - n*y*Log[y])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := m*x*ln(y)*diff(w(x,y),x)+ (y*f(x^n*y^m) - n*y*ln[y])*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*Tan[x]] - a*Tan[x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*tan(x)) - a*tan(x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = Exp[lambda*x]*D[w[x, y], x] + f[lambda*x + Log[y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := exp(lambda*x)*diff(w(x,y),x)+ f(lambda*x+ln(y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.16 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*y]*f[lambda*y + Log[x]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*y)*f(lambda*y+ln(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________