Added Nov 25, 2018.
Problem 12.2.2 from Richard Haberman applied partial differential equations book, 5th edition
Solve for \(u(x,t)\)
With initial conditions \(\omega (x,0)=\cos x\).
See my HW 12, Math 322, UW Madison.
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, t], t] - 3*D[w[x, t], x] == 0; ic = w[x, 0] == Cos[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic}, w[x, t], {x, t}], 60*10]];
Maple ✓
restart; pde := diff(w(x,t),t)-3*diff(w(x,t),x)=0; ic:=w(x,0)=cos(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],w(x,t))),output='realtime'));
Hand solution
Solve
With I.C. \(w\left ( x,0\right ) =\cos x\)
Solution
Let \(w=w\left ( x\left ( t\right ) ,t\right ) \). Then
Solving (3) gives
We need to find \(x\left ( 0\right ) \). From (4)
Hence (5) becomes
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________