Added January 7, 2019.
Problem 2.3.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + a*lambda*Exp[lambda*x] - a^2*Exp[2*lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2+a*lambda*exp(lambda*x)- a^2*exp(2*lambda *x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + b*y + a*(lambda - b)*Exp[lambda*x] - a^2*Exp[2*lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2+b*y+ a*(lambda-b)*exp(lambda*x) - a^2*exp(2*lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + a*Exp[lambda*x]*y - a*b*Exp[lambda*x] - b^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2+a*exp(lambda*x)*y-a*b*exp(lambda*x)- b^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] - (y^2 - a*x*Exp[lambda*x]*y + a*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)- (y^2-a*x*exp(lambda*x)*y + a*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*Exp[-(lambda*x)])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*exp(lambda*x)*y^2 + b*exp(-lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*mu*Exp[mu*x] - a*b^2*Exp[(lambda + 2*mu)*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ (a*exp(lambda*x)*y^2 + b*mu*exp(mu*x) - a*b^2*exp((lambda + 2*mu)*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*y + c*Exp[-(lambda*x)])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*exp(lambda*x)*y^2 + b*y +c*exp(-lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + mu*y - a*b^2*Exp[(lambda + 2*mu)*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*exp(lambda*x)*y^2 + mu*y - a*b^2*exp((lambda+2*mu)*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (Exp[lambda*x]*y^2 + a*Exp[mu*x]*y + a*lambda*Exp[(mu - lambda)*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (exp(lambda*x)*y^2 + a*exp(mu*x)*y+a*lambda*exp((mu-lambda)*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] - (lambda*Exp[lambda*x]*y^2 - a*Exp[mu*x]*y + a*lambda*Exp[(mu - lambda)*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)- (lambda*exp(lambda*x)*y^2 - a*exp(mu*x)*y + a*lambda*exp((mu-lambda)*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + a*b*Exp[(lambda + mu)*x]*y - b*mu*Exp[mu*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*exp(lambda*x)*y^2+ a*b*exp((lambda +mu)*x)*y - b*mu*exp(mu*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[(2*lambda + mu)*x]*y^2 + (b*Exp[(lambda + mu)*x] - lambda)*y + c*Exp[mu*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*exp((2*lambda +mu)*x)*y^2+ (b*exp((lambda +mu)*x) -lambda)*y + c*exp(mu*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (Exp[lambda*x]*(y - b*Exp[mu*x])^2 + b*mu*Exp[mu*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( exp(lambda*x) *(y- b*exp(mu*x))^2 + b*mu*exp(mu*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + b*n*x^(n - 1) - a*b^2*Exp[lambda*x]*x^(2*n))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ ( a*exp(lambda*x)*y^2+ b*n*x^(n-1) - a*b^2*exp(lambda*x)*x^(2*n))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (Exp[lambda*x]*y^2 + a*x^n*y + a*lambda*x^n*Exp[-(lambda*x)])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ ( exp(lambda*x)*y^2+ a*x^n*y + a*lambda*x^n*exp(-lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.16 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*Exp[lambda*x]*y^2 + a*x^n*Exp[lambda*x]*y - a*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ ( lambda*exp(lambda*x)*y^2+ a*x^n*exp(lambda*x)*y - a*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.17 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 - a*b*x^n*Exp[lambda*x]*y + b*n*x^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*exp(lambda*x)*y^2- a*b*x^n*exp(lambda*x)*y + b*n*x^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.18 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*y^2 + b*lambda*Exp[lambda*x] - a*b^2*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ ( a*x^n*y^2 + b*lambda*exp(lambda*x) - a*b^2*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.19 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*y^2 + lambda*y - a*b^2*x^n*Exp[2*lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*x^n*y^2 + lambda*y - a*b^2*x^n*exp(2*lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.20 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*y^2 - a*b*x^n*Exp[lambda*x]*y + b*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✗
restart; pde := diff(w(x,y),x)+ ( a*x^n*y^2 - a*b*x^n*exp(lambda*x)*y + b*lambda*exp(lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.21 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*y^2 - a*x^n*(b*Exp[lambda*x] + c)*y + b*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ ( a*x^n*y^2 - a*x^n*(b*exp(lambda*x) + c )*y + b*lambda*exp(lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 7, 2019.
Problem 2.3.2.22 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*Exp[2*lambda*x]*y^2 + (b*x^n*Exp[lambda*x] - lambda)*y + c*x^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*x^n*exp(2*lambda*x)*y^2 + (b*x^n*exp(lambda*x) - lambda)*y + c*x^n)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.23 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*(y - b*x^n - c)^2 + b*n*x^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*exp(lambda*x)*(y- b*x^n - c)^2 +b*n*x^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.24 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + 2*a*lambda*x*Exp[lambda*x^2] - a^2*Exp[2*lambda*x^2])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ ( y^2+2*a*lambda*x*exp(lambda*x^2) - a^2*exp(2*lambda*x^2))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.25 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[-(lambda*x^2)]*y^2 + lambda*x*y + a*b^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*exp(-lambda*x^2)*y^2 + lambda*x*y + a*b^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.26 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^n*y^2 + lambda*x*y + a*b^2*x^n*Exp[lambda*x^2])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*x^n*y^2 + lambda*x*y + a*b^2*x^n*exp(lambda*x^2) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.27 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[2*lambda*x]*y^3 + b*Exp[lambda*x]*y^2 + c*y + d*Exp[-(lambda*x)])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*exp(2*lambda*x)*y^3 + b*exp(lambda*x)*y^2 + c*y+ d*exp(-lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.28 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^3 + 3*a*b*Exp[lambda*x]*y^2 + c*y - 2*a*b^3*Exp[lambda*x] + b*c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+ ( a*exp(lambda*x)*y^3 + 3*a*b*exp(lambda*x)*y^2 + c*y- 2*a*b^3*exp(lambda*x) + b*c )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.29 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + k*y + a*b^2*x^(2*k)*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x)+ ( a*exp(lambda*x)* y^2 + k*y + a*b^2*x^(2*k)*exp(lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.30 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (a*x^(2*n)*Exp[lambda*x]*y^2 + (b*x^n*Exp[lambda*x] - n)*y + c*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ ( a*x^(2*n)*exp(lambda*x)*y^2 + (b*x^n*exp(lambda*x) - n)*y + c*exp(lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.31 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = y*D[w[x, y], x] + Exp[lambda*x]*((2*a*lambda*x + a + b)*y - Exp[lambda*x]*(a^2*lambda*x^2 + a*b*x - c))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := y*diff(w(x,y),x)+ exp(lambda*x)* ( (2*a*lambda*x+a + b)*y - exp(lambda*x)*(a^2*lambda*x^2 + a*b*x-c) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.32 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*y^m*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*exp(lambda*x)*diff(w(x,y),x)+ b*y^m*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.33 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = (a*Exp[y] + b*x)*D[w[x, y], x] + D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := (a*exp(y)+b*x)*diff(w(x,y),x)+ diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.34 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*Exp[lambda*y] + b*x*y^m)*D[w[x, y], x] + Exp[mu*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*exp(lambda*y)+ b*x*y^m)*diff(w(x,y),x)+ exp(mu*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.35 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*y^m + b*x*Exp[lambda*y])*D[w[x, y], x] + y^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*y^m+ b *x*exp(lambda*y))*diff(w(x,y),x)+ y^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 10, 2019.
Problem 2.3.2.36 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*y^m + b*x*y^k)*D[w[x, y], x] + Exp[lambda*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*y^m+ b *x*y^k)*diff(w(x,y),x)+ exp(lambda*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________