Added January 2, 2019.
Problem 2.2.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*diff(w(x,y),x)+b*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
The Lagrange-charpit equations are
The first pair of equations results in \(bdx=ady\) or \(bx=ay+C_{1}\). Hence
Since \(dw=0\) then \(w=C_{2}\). But \(C_{2}=F\left ( C_{1}\right ) \) where \(F\) is arbitrary function, therefore the solution is
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + (b*x + c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*diff(w(x,y),x)+(b*x+c)*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Solve \(aw_{x}+\left ( bx+c\right ) w_{y}=0\). The Lagrange-charpit equations are
The first pair of equations gives \(\frac {\left ( bx+c\right ) }{a}dx=dy\). Integrating results in
Since \(dw=0\) then \(w=C_{2}\). But \(C_{2}=F\left ( C_{1}\right ) \). Where \(F\) is arbitray function. Therefore
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x + b*y + c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(a*x+b*y+c)*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Solve
The Lagrange-charpit equations are
The first pair of equations gives
This is linear. Integrating factor is \(I=e^{-bx}\). Hence the above becomes
Since \(dw=0\) then \(w=C_{2}\). But \(C_{2}=F\left ( C_{1}\right ) \). Therefore
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*x*diff(w(x,y),x)+b*y*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Solve
The Lagrange-charpit equations are
The first pair of equations gives
Since \(dw=0\) then \(w=C_{2}\). But \(C_{2}=F\left ( C_{1}\right ) \). Therefore
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*y*D[w[x, y], x] + b*x*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=a*y*diff(w(x,y),x)+b*x*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Using method of charaterstics the lagrange-Charpit equations are
The first two equations give \(aydy=bxdx\). Hence
And \(du=0\). This gives \(u=C_{2}\). Now let \(C_{2}=F\left ( C_{1}\right ) \). This gives
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = y*D[w[x, y], x] + (y + a)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=y*diff(w(x,y),x)+(y+a)*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Using method of charaterstics the lagrange-Charpit equations are
The first two equations give \(dx=\frac {y}{y+a}dy\). Hence by integrating
And \(du=0\). This gives \(u=C_{2}\). Now let \(C_{2}=F\left ( C_{1}\right ) \). This gives
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✓
ClearAll["Global`*"]; pde = (a*y + b*x + c)*D[w[x, y], x] - (b*y + k*x + s)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde :=(a*y+b*x+c)*diff(w(x,y),x)-(b*y+k*x+s)*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
Hand solution
Solve
The lagrange-Charpit equations are
The first two equations give
Need to solve the above, then solve for \(C_{1}\) to finish the solution.
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.1.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
Mathematica ✗
ClearAll["Global`*"]; pde = (a1*x + b1*y + c1)*D[w[x, y], x] + (a1*x + b2*y + c2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde :=(a1*x+b1*y+c1)*diff(w(x,y),x)+(a2*x+b2*y+c2)*diff(w(x,y),y)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________