5.2.2 Polar coordinates
5.2.2.1 [404] no \(\theta \) dependency, fixed boundary, general case
5.2.2.2 [405] no \(\theta \) dependency. Specific example. Both initial conditions not zero
5.2.2.3 [406] no \(\theta \) dependency. Specific example. Both initial conditions not zero
5.2.2.4 [407] no \(\theta \) dependency. Using integral transforms. Source
present. Specific example
5.2.2.5 [408] no \(\theta \) dependency. Using integral transforms. Source
present. Specific example
5.2.2.6 [409] \(\theta \) dependency, fixed on edges, general solution
5.2.2.7 [410] \(\theta \) dependency, fixed on edges, zero initial velocity, general solution
5.2.2.8 [411] \(\theta \) dependency, fixed on edges, zero initial velocity, specific example
5.2.2.9 [412] \(\theta \) dependency, fixed on edges, zero initial position, specific example
5.2.2.10 [413] \(\theta \) dependency, fixed on edges, zero initial position
with internal source (Haberman 8.5.5. (b)
5.2.2.1 [404] no \(\theta \) dependency, fixed boundary, general case
problem number 404
Added January 12, 2020
Circular disk. fixed edge of disk, no \(\theta \) dependency, with initial position and velocity given
Solve for \(u(r,t)\) with \(0<r<a\) and \(t>0\) .
\[ u_{tt}= c^2 \left ( u_{rr} + \frac {1}{r} u_r \right ) \]
With boundary conditions
\begin{align*} u(a,t) &=0 \end{align*}
With initial conditions
\begin{align*} u(r,0) &=f(r) \\ \frac {\partial u}{\partial t}(r,0) &= g(r) \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[r, t], {t, 2}] == c^2*( D [u[r, t], {r, 2}] + 1/r* D [u[r, t], r]);
ic = {u[r, 0] == f[r], Derivative [0, 1][u][r, 0] == g[r]};
bc = u[a, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, t], {r, t}, Assumptions ->{t>0,r>0,r<a}], 60*10]];
sol = sol /. K [1] -> n;
\[\left \{\left \{u(r,t)\to \underset {n=1}{\overset {\infty }{\sum }}\fbox {$\frac {2 \operatorname {BesselJ}\left (0,\frac {r j_{0,n}}{a}\right ) \left (\sqrt {c^2} j_{0,n} \cos \left (\frac {\sqrt {c^2} t j_{0,n}}{a}\right ) \int _0^a r \operatorname {BesselJ}\left (0,\frac {r j_{0,n}}{a}\right ) f(r) \, dr+a \left (\int _0^a r \operatorname {BesselJ}\left (0,\frac {r j_{0,n}}{a}\right ) g(r) \, dr\right ) \sin \left (\frac {\sqrt {c^2} t j_{0,n}}{a}\right )\right )}{a^2 \sqrt {c^2} \left (\operatorname {BesselJ}\left (0,j_{0,n}\right ){}^2+\operatorname {BesselJ}\left (1,j_{0,n}\right ){}^2\right ) j_{0,n}}\text { if }j_{0,n}\in \mathbb {R}$}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( r , t), t$2) = c^2*( diff ( u ( r , t ), r$2)+ (1/r)* diff ( u ( r , t ), r ) );
ic := u(r,0)=f(r), D [2]( u )( r ,0)= g ( r );
bc := u(a,t)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, t),HINT = boundedseries(r=0)) assuming t>0,r>0,r<a),output= ' realtime ' ));
\[u \left (r , t\right ) = \frac {-\mathcal {L}^{-1}\left (s \operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselI}\left (0, \frac {s a}{c}\right ) a f \left (a \right )d a , s , t\right )+\mathcal {L}^{-1}\left (\frac {s \operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \operatorname {BesselI}\left (0, \frac {s a}{c}\right ) \int \operatorname {BesselK}\left (0, \frac {s a}{c}\right ) a f \left (a \right )d a}{\operatorname {BesselK}\left (0, \frac {s a}{c}\right )}, s , t\right )-\mathcal {L}^{-1}\left (\operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselI}\left (0, \frac {s a}{c}\right ) g \left (a \right ) a d a , s , t\right )+\mathcal {L}^{-1}\left (\frac {\operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \operatorname {BesselI}\left (0, \frac {s a}{c}\right ) \int \operatorname {BesselK}\left (0, \frac {s a}{c}\right ) g \left (a \right ) a d a}{\operatorname {BesselK}\left (0, \frac {s a}{c}\right )}, s , t\right )+\mathcal {L}^{-1}\left (\operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselI}\left (0, \frac {s r}{c}\right ) g \left (r \right ) r d r , s , t\right )+\mathcal {L}^{-1}\left (s \operatorname {BesselK}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselI}\left (0, \frac {s r}{c}\right ) r f \left (r \right )d r , s , t\right )-\mathcal {L}^{-1}\left (\operatorname {BesselI}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselK}\left (0, \frac {s r}{c}\right ) g \left (r \right ) r d r , s , t\right )-\mathcal {L}^{-1}\left (s \operatorname {BesselI}\left (0, \frac {s r}{c}\right ) \int \operatorname {BesselK}\left (0, \frac {s r}{c}\right ) r f \left (r \right )d r , s , t\right )}{c^{2}}\]
Has unresolved Invlaplace calls
Hand
solution
Assuming \(u=T\left ( t\right ) R\left ( r\right ) \) . Substituting in the PDE gives
\[ \frac {1}{c^{2}}T^{\prime \prime }R=R^{\prime \prime }T+\frac {1}{r}R^{\prime }T \]
Dividing by \(RT\)
\[ \frac {1}{c^{2}}\frac {T^{\prime \prime }}{T}=\frac {R^{\prime \prime }}{R}+\frac {1}{r}\frac {R^{\prime }}{R}\]
Hence
\begin{align*} \frac {1}{c^{2}}\frac {T^{\prime \prime }}{T} & =-\lambda \\ \frac {R^{\prime \prime }}{R}+\frac {1}{r}\frac {R^{\prime }}{R} & =-\lambda \end{align*}
The time ODE is
\[ T^{\prime \prime }+c^{2}\lambda T=0 \]
And the \(r\) ODE is (Sturm-Liouville)
\[ rR^{\prime \prime }+R^{\prime }+\lambda rR=0 \]
Where \(p=r,q=0,\sigma =r\) . This is singular SL. The solution turns out to be
\[ R_{n}\left ( r\right ) =A_{n}J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \qquad n=1,2,3,\cdots \]
Where \(\lambda _{n}\) is found from roots of \(0=J_{n}\left ( \sqrt {\lambda _{n}}a\right ) \) giving the eigenvalues. Now the time ODE is solved
\begin{align*} T_{n}^{\prime \prime }+c^{2}\lambda _{n}T_{n} & =0\\ T_{n} & =B_{n}\cos \left ( c\sqrt {\lambda _{n}}t\right ) +C_{n}\sin \left ( c\sqrt {\lambda _{n}}t\right ) \qquad n=1,2,3,\ldots , \end{align*}
Hence the solution is
\begin{align} u\left ( r,t\right ) & =\sum _{n=1}^{\infty }T_{n}R_{n}\nonumber \\ & =\sum _{n=1}^{\infty }A_{n}\cos \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) +B_{n}\sin \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \tag {1}\end{align}
Now initial conditions \(u\left ( r,0\right ) =f\left ( r\right ) \) is used to find \(A_{n}\,\) using orthogonality. At \(t=0\) the solution simplifies to
\[ u\left ( r,0\right ) =\sum _{n=1}^{\infty }A_{n}J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
Hence
\begin{align*} f\left ( r\right ) & =\sum _{n=1}^{\infty }A_{n}J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \\ \int _{0}^{a}f\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr & =A_{n}\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr\\ A_{n} & =\frac {\int _{0}^{a}f\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\end{align*}
Now we will look at the second initial conditions \(\frac {\partial u}{\partial t}\left ( r,0\right ) =g\left ( r\right ) .\) Taking derivative w.r.t. time \(t\) of the solution in (1) gives
\[ \frac {\partial u}{\partial t}\left ( r,t\right ) =\sum _{n=1}^{\infty }-c\sqrt {\lambda _{n}}A_{n}\sin \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) +B_{n}c\sqrt {\lambda _{n}}\cos \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
At time \(t=0\) the above becomes
\[ g\left ( r\right ) =\sum _{n=1}^{\infty }B_{n}c\sqrt {\lambda _{n}}J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
Now orthogonality is used. The above becomes
\[ B_{n}=\frac {\int _{0}^{a}g\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{c\sqrt {\lambda _{n}}\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\]
Summary of solution
\[ u\left ( r,t\right ) =\sum _{n=1}^{\infty }A_{n}\cos \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) +B_{n}\sin \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
\[ A_{n}=\frac {\int _{0}^{a}f\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\]
\[ B_{n}=\frac {\int _{0}^{a}g\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{c\sqrt {\lambda _{n}}\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\]
With \(\lambda _{n}\) being the solutions for \(0=J_{0}\left ( \sqrt {\lambda _{n}}a\right ) \) . We have infinite number of zeros. This generates all the needed \(\lambda _{n}\) . Hence \(\sqrt {\lambda _{n}}a=BesselJZero\left ( 0,n\right ) \) , therefore \(\sqrt {\lambda _{n}}=\frac {a}{BesselJZero\left ( 0,n\right ) }\)
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.2 [405] no \(\theta \) dependency. Specific example. Both initial conditions not zero
problem number 405
Taken from Mathematica helps pages on DSolve
In circular disk. fixed edge of disk, no \(\theta \) dependency, with initial position and velocity given
Solve for \(u(r,t)\) with \(0<r<1\) and \(t>0\) .
\[ u_{tt}= c^2 \left ( u_{rr} + \frac {1}{r} u_r \right ) \]
With boundary conditions
\begin{align*} u(1,t) &=0 \end{align*}
With initial conditions
\begin{align*} u(r,0) &=1 \\ \frac {\partial u}{\partial t}(r,0) &= \frac {r}{3} \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[r, t], {t, 2}] == c^2*( D [u[r, t], {r, 2}] + 1/r* D [u[r, t], r]);
ic = {u[r, 0] == 1, Derivative [0, 1][u][r, 0] == r/3};
bc = u[1, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, t], {r, t}], 60*10]];
sol = sol /. K [1] -> n;
sol = FullSimplify [sol];
\[\left \{\left \{u(r,t)\to \underset {n=1}{\overset {\infty }{\sum }}\fbox {$\frac {\operatorname {BesselJ}\left (0,r j_{0,n}\right ) \left (6 c \operatorname {BesselJ}\left (1,j_{0,n}\right ) \cos \left (c t j_{0,n}\right ) \left (j_{0,n}\right ){}^2+\sin \left (c t j_{0,n}\right ) \left (\operatorname {BesselJ}\left (1,j_{0,n}\right ) \left (2 j_{0,n}-\pi \pmb {H}_0\left (j_{0,n}\right )\right )+\pi \operatorname {BesselJ}\left (0,j_{0,n}\right ) \pmb {H}_1\left (j_{0,n}\right )\right )\right )}{3 c \left (\operatorname {BesselJ}\left (0,j_{0,n}\right ){}^2+\operatorname {BesselJ}\left (1,j_{0,n}\right ){}^2\right ) \left (j_{0,n}\right ){}^3}\text { if }j_{0,n}>0$}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( r , t), t$2) = c^2*( diff ( u ( r , t ), r$2)+ (1/r)* diff ( u ( r , t ), r ) );
ic := u(r,0)=1, eval ( diff ( u ( r , t ), t ), t =0)= r /3;
bc := u(1,t)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, t)) assuming t>0,r>0,r<1),output= ' realtime ' ));
\[u \left (r , t\right ) = -\mathcal {L}^{-1}\left (\frac {\operatorname {BesselI}\left (0, \frac {s r}{c}\right )}{\operatorname {BesselI}\left (0, \frac {s}{c}\right ) s}, s , t\right )-\frac {\mathcal {L}^{-1}\left (\frac {\operatorname {BesselI}\left (0, \frac {s r}{c}\right )}{\operatorname {BesselI}\left (0, \frac {s}{c}\right ) s^{2}}, s , t\right )}{3}+\frac {\pi c \mathcal {L}^{-1}\left (\frac {\operatorname {BesselI}\left (0, \frac {s r}{c}\right ) \operatorname {StruveL}\left (0, \frac {s}{c}\right )}{\operatorname {BesselI}\left (0, \frac {s}{c}\right ) s^{3}}, s , t\right )}{6}-\frac {\pi c \mathcal {L}^{-1}\left (\frac {\operatorname {StruveL}\left (0, \frac {s r}{c}\right )}{s^{3}}, s , t\right )}{6}+1+\frac {t r}{3}\]
Has unresolved Invlaplace calls
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.3 [406] no \(\theta \) dependency. Specific example. Both initial conditions not zero
problem number 406
Added January 12, 2020.
In circular disk. fixed edge of disk, no \(\theta \) dependency, with initial position and velocity given
Solve for \(u(r,t)\) with \(0<r<a\) and \(t>0\) .
\[ u_{tt}= c^2 \left ( u_{rr} + \frac {1}{r} u_r \right ) \]
With boundary conditions
\begin{align*} u(a,t) &=0 \end{align*}
With initial conditions
\begin{align*} u(r,0) &=f(r) \\ \frac {\partial u}{\partial t}(r,0) &= g(r) \end{align*}
Using \(a=1,c=\frac {2}{10},g(r)=0,f(r)=r\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
c =2/10; a=1;
g [ r_ ]:=0;
f [ r_ ]:= r ;
pde = D [u[r, t], {t, 2}] == c^2*( D [u[r, t], {r, 2}] + 1/r* D [u[r, t], r]);
ic = {u[r, 0] == f[r], Derivative [0, 1][u][r, 0] == g[r]};
bc = u[a, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, t], {r, t}, Assumptions ->{t>0,r>0}], 60*10]];
sol = sol /. K [1] -> n;
\[\left \{\left \{u(r,t)\to \underset {n=1}{\overset {\infty }{\sum }}\fbox {$\frac {\operatorname {BesselJ}\left (0,r j_{0,n}\right ) \cos \left (\frac {t j_{0,n}}{5}\right ) \left (\operatorname {BesselJ}\left (1,j_{0,n}\right ) \left (2 j_{0,n}-\pi \pmb {H}_0\left (j_{0,n}\right )\right )+\pi \operatorname {BesselJ}\left (0,j_{0,n}\right ) \pmb {H}_1\left (j_{0,n}\right )\right )}{\left (\operatorname {BesselJ}\left (0,j_{0,n}\right ){}^2+\operatorname {BesselJ}\left (1,j_{0,n}\right ){}^2\right ) \left (j_{0,n}\right ){}^2}\text { if }j_{0,n}\in \mathbb {R}\land \Re \left (j_{0,n}\right )\geq 0\land \left (\Im \left (j_{0,n}\right )>0\lor \Re \left (j_{0,n}\right )>0\right )$}\right \}\right \}\]
Maple ✓
restart ;
c :=2/10;
a :=1;
g := r ->0;
f := r -> r ;
pde := diff ( u ( r , t), t$2) = c^2*( diff ( u ( r , t ), r$2)+ (1/r)* diff ( u ( r , t ), r ) );
ic := u(r,0)=f(r), D [2]( u )( r ,0)= g ( r );
bc := u(a,t)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, t)) assuming t>0,r>0),output= ' realtime ' ));
\[u \left (r , t\right ) = \frac {125 \mathcal {L}^{-1}\left (s^{2} \operatorname {BesselI}\left (0, 5 s r \right ) \operatorname {hypergeom}\left (\left [1\right ], \left [\frac {5}{2}, \frac {5}{2}\right ], \frac {25 s^{2}}{4}\right ) \operatorname {BesselK}\left (1, 5 s \right ), s , t\right )}{9}+\frac {\pi \mathcal {L}^{-1}\left (\frac {\operatorname {BesselI}\left (0, 5 s r \right ) \operatorname {StruveL}\left (1, 5 s \right ) \operatorname {BesselK}\left (0, 5 s \right )}{s}, s , t\right )}{2}-\frac {25 \mathcal {L}^{-1}\left (\frac {s \operatorname {BesselI}\left (0, 5 s r \right ) \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [1, \frac {5}{2}\right ], \frac {25 s^{2}}{4}\right ) \operatorname {BesselK}\left (0, 5 s \right )}{\operatorname {BesselI}\left (0, 5 s \right )}, s , t\right )}{3}-\frac {125 r^{4} \mathcal {L}^{-1}\left (s^{2} \operatorname {hypergeom}\left (\left [1\right ], \left [\frac {5}{2}, \frac {5}{2}\right ], \frac {25 s^{2} r^{2}}{4}\right ) \operatorname {BesselK}\left (1, 5 s r \right ) \operatorname {BesselI}\left (0, 5 s r \right ), s , t\right )}{9}-\frac {25 r^{3} \mathcal {L}^{-1}\left (\frac {3 \operatorname {StruveL}\left (1, 5 s r \right ) \pi \operatorname {BesselK}\left (0, 5 s r \right ) \operatorname {BesselI}\left (0, 5 s r \right )}{50 s \,r^{2}}, s , t\right )}{3}+\frac {25 r^{3} \mathcal {L}^{-1}\left (s \operatorname {hypergeom}\left (\left [\frac {3}{2}\right ], \left [1, \frac {5}{2}\right ], \frac {25 s^{2} r^{2}}{4}\right ) \operatorname {BesselK}\left (0, 5 s r \right ), s , t\right )}{3}\]
Has unresolved Invlaplace calls. How to get series solution?
Hand
solution
The basic solution for this type of PDE was already given in problem 5.2.2.1 on page 1381 as
\[ u\left ( r,t\right ) =\sum _{n=1}^{\infty }A_{n}\cos \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) +B_{n}\sin \left ( c\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
\[ A_{n}=\frac {\int _{0}^{a}f\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\]
\[ B_{n}=\frac {\int _{0}^{a}g\left ( r\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) rdr}{c\sqrt {\lambda _{n}}\int _{0}^{a}J_{0}^{2}\left ( \sqrt {\lambda _{n}}r\right ) rdr}\]
With \(\lambda _{n}\) being the solutions for \(0=J_{0}\left ( \sqrt {\lambda _{n}}a\right ) \) . We have infinite number of zeros. This generates all the needed \(\lambda _{n}\) . Hence \(\sqrt {\lambda _{n}}a=BesselJZero\left ( 0,n\right ) \) , therefore \(\sqrt {\lambda _{n}}=\frac {a}{BesselJZero\left ( 0,n\right ) }\) .
In this problem \(c=\frac {2}{10},a=1,g\left ( r\right ) =0\) and \(f\left ( r\right ) =r\) , hence the solution becomes
\[ u\left ( r,t\right ) =\sum _{n=1}^{\infty }A_{n}\cos \left ( \frac {2}{10}\sqrt {\lambda _{n}}t\right ) J_{0}\left ( \sqrt {\lambda _{n}}r\right ) \]
Where \(\sqrt {\lambda _{n}}=\frac {1}{BesselJZero\left ( 0,n\right ) }\) .
This animation runs for 40 seconds.
Source code for all the above animation
(* By Nasser M Abbasi*)
SetDirectory [ NotebookDirectory []]
(* Axis symmetric*)
(* definitions *)
ClearAll [ a , c , n , m , r , theta , f , g , u ]
A0 [ n_ , a_ , lam0_ ]:= Module [{num,den,theta,r,f},
f=r;
num= N [( BesselJ [1,lam0] (2 lam0- Pi StruveH [0,lam0])+
Pi BesselJ [0,lam0] StruveH [1,lam0])/(2 lam0^2)];
den=0.5 ( BesselJ [0,lam0]^2+ BesselJ [1,lam0]^2);
num/den
];
u [ r_ , theta_ , t_ ]:= Sum [ A0tbl [[ n ]]* Cos [ c lamtbl[[n]] t] * BesselJ [0,lamtbl[[n]]*r],{n,1,maxN}];
maxN =6;
a =1;
c =.2;
lam [ n_ , a_ ]:= Module [{ x },
x=BesselJZero[0,n];
N [(x/a)]
];
lamtbl = Table [ lam [ n , a ],{ n ,1, maxN }];
A0tbl = Table [ A0 [ n , a , lamtbl [[ n ]]],{ n ,1, maxN }];
t =.1
ParametricPlot3D [{ r Cos [theta],r Sin [theta], Evaluate [u[r,theta,t]]},{r,0,1},
{theta,0,2 Pi }, AxesLabel ->{"r","theta","u"}, ImageMargins ->5,
PerformanceGoal->"Quality", BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{-5,5}}, Mesh ->10, MaxRecursion ->1]
Animate [ ParametricPlot3D [{ r Cos [theta],r Sin [theta],
Evaluate [u[r,theta,t]]},{r,0,1},{theta,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Speed", BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{-5,5}},
Mesh ->10, MaxRecursion ->1],{t,0,50,.01}]
r = Table [
Labeled[ ParametricPlot3D [{r Cos [theta],r Sin [theta],
Evaluate [u[r,theta,t]]},{r,0,1},{theta,0,2 Pi }, AxesLabel ->{"r","theta","u"},
BaseStyle->15, ImageMargins ->5,PerformanceGoal->"Speed", BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{-5,5}}, Mesh ->10, MaxRecursion ->1],
Row [{"time (sec)",Round@t}]],{t,0,40,.1}];
Export [ " anim_axis . gif " , r , " DisplayDurations " -> Table [.05,{ Length [ r ]}]]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
problem number 407
Added Oct 6, 2019.
Taken from https://www.mapleprimes.com/posts/211274-Integral-Transforms-revamped-And-PDE
Solve
\[ {\frac {\partial ^{2}}{\partial {r}^{2}}}u \left ( r,t \right ) +{\frac {{\frac {\partial }{\partial r}}u \left ( r,t \right ) }{r}}+{\frac { \partial ^{2}}{\partial {t}^{2}}}u \left ( r,t \right ) =-Q_{0}\,q \left ( r \right ) \]
With initial conditions
\begin{align*} u(r, 0) &= 0 \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[r, t], {r, 2}] + D [u[r, t], r]/r + D [u[r, t], {t, 2}] == -Q0*q[r];
ic = u[r, 0] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic}, u[r, t], {r, t}], 60*10]];
\[\left \{\left \{u(r,t)\to \text {Q0} \left (\int _0^{\infty } \frac {\operatorname {BesselJ}(0,r K[1]) \int _0^{\infty } r q(r) \operatorname {BesselJ}(0,r K[1]) \, dr}{K[1]} \, dK[1]-\int _0^{\infty } \frac {e^{-t K[1]} \operatorname {BesselJ}(0,r K[1]) \int _0^{\infty } r q(r) \operatorname {BesselJ}(0,r K[1]) \, dr}{K[1]} \, dK[1]\right )\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( r , t), r$2) + diff ( u ( r , t), r)/r + diff ( u ( r , t), t$2) = -Q__0*q(r);
iv := u(r, 0) = 0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , iv ], u ( r , t ))), output = ' realtime ' ));
sol := convert ( sol , Int , only = hankel);
\[u \left (r , t\right ) = Q_{0} \left (-\int _{0}^{\infty }\frac {{\mathrm e}^{-s t} \int _{0}^{\infty }q \left (r \right ) r \operatorname {BesselJ}\left (0, r s \right )d r \operatorname {BesselJ}\left (0, r s \right )}{s}d s +\int _{0}^{\infty }\frac {\int _{0}^{\infty }q \left (r \right ) r \operatorname {BesselJ}\left (0, r s \right )d r \operatorname {BesselJ}\left (0, r s \right )}{s}d s \right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
problem number 408
Added Oct 6, 2019.
Taken from https://www.mapleprimes.com/posts/211274-Integral-Transforms-revamped-And-PDE
Solve
\[ {c}^{2} \left ( {\frac {\partial ^{2}}{\partial {r}^{2}}}u \left ( r,t\right ) +{\frac {{\frac {\partial }{\partial r}}u \left ( r,t \right ) }{r}} \right ) ={\frac {\partial ^{2}}{\partial {t}^{2}}}u \left ( r,t\right ) \]
With initial conditions
\begin{align*} u(r, 0) &= \frac {A a}{\sqrt {a^2+r^2}}\\ \frac {\partial u(r,0)}{\partial t} &=0 \end{align*}
Mathematica ✗
ClearAll [ " Global ` * " ];
pde = c^2*( D [u[r, t], {r, 2}] + D [u[r, t], r]/r) == D [u[r, t], {t, 2}];
ic = {u[r, 0] == A*a*(a^2 + r^2)^(-1/2), Derivative [0, 1][u][r, 0] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic}, u[r, t], {r, t}], 60*10]];
Failed
Maple ✓
restart ;
pde := c^2*( diff ( u ( r , t), r, r) + diff ( u ( r , t), r)/r) = diff ( u ( r , t), t, t);
iv := u(r, 0) = A*a*(a^2 + r^2)^(-1/2), D [2]( u )( r , 0) = 0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , iv ], u ( r , t ), method = Hankel) assuming (0 < r, 0 < t, 0 < a) ),output= ' realtime ' ));
\[u \left (r , t\right ) = \frac {A a \left (\sqrt {2 i a c t -c^{2} t^{2}+a^{2}+r^{2}}+\sqrt {-2 i a c t -c^{2} t^{2}+a^{2}+r^{2}}\right )}{2 \sqrt {-2 i a c t -c^{2} t^{2}+a^{2}+r^{2}}\, \sqrt {2 i a c t -c^{2} t^{2}+a^{2}+r^{2}}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.6 [409] \(\theta \) dependency, fixed on edges, general solution
problem number 409
Added January 11, 2020
Solve for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} +\frac {1}{r^2} \frac {\partial ^2 u}{\partial \theta ^2} \right ) \]
With boundary conditions
\begin{align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end{align*}
With initial conditions
\begin{align*} u(r,\theta ,0) &= f(r,\theta ) \\ \frac {\partial u}{\partial t}(r,\theta ,0) &= g(r,\theta ) \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[r, theta, t], {t, 2}] == c^2*Laplacian[u[r,theta,t],{r,theta},"Polar"];
ic = {u[r, theta, 0] == f[r, theta], Derivative [0, 0, 1][u][r, theta, 0] == g[r,theta]};
bc = {u[a, theta, t] == 0, u[r, - Pi , t] == u[r, Pi , t], Derivative [0, 1, 0][u][r, - Pi , t] == Derivative [0, 1, 0][u][r, Pi , t]};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a, a > 0, t > 0, - Pi < theta < Pi }], 60*10]];
\[\left \{\left \{u(r,\theta ,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[3]=1}{\overset {\infty }{\sum }}-\frac {\sqrt {\frac {2}{\pi }} \operatorname {BesselJ}\left (0,\frac {r j_{0,K[3]}}{a}\right ) \left (-\frac {\sqrt {\frac {2}{\pi }} \cos \left (\frac {\sqrt {c^2} t j_{0,K[3]}}{a}\right ) \int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (0,\frac {r j_{0,K[3]}}{a}\right ) f(r,\theta )d\theta dr}{a \operatorname {BesselJ}\left (1,j_{0,K[3]}\right )}-\frac {\sqrt {\frac {2}{\pi }} \left (\int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (0,\frac {r j_{0,K[3]}}{a}\right ) g(r,\theta )d\theta dr\right ) \sin \left (\frac {\sqrt {c^2} t j_{0,K[3]}}{a}\right )}{| c| \operatorname {BesselJ}\left (1,j_{0,K[3]}\right ) j_{0,K[3]}}\right )}{a \operatorname {BesselJ}\left (1,j_{0,K[3]}\right )}+\underset {K[3]=1}{\overset {\infty }{\sum }}\left (\underset {K[1]=1}{\overset {\infty }{\sum }}\left (\frac {\sqrt {\frac {2}{\pi }} \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos (\theta K[1]) \left (\frac {\sqrt {\frac {2}{\pi }} \cos \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right ) \int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos (\theta K[1]) f(r,\theta )d\theta dr}{a \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right )}+\frac {\sqrt {\frac {2}{\pi }} \left (\int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos (\theta K[1]) g(r,\theta )d\theta dr\right ) \sin \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right )}{| c| \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right ) j_{K[1],K[3]}}\right )}{a \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right )}+\frac {\sqrt {\frac {2}{\pi }} \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \left (\frac {\sqrt {\frac {2}{\pi }} \cos \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right ) \int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) f(r,\theta ) \sin (\theta K[1])d\theta dr}{a \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right )}+\frac {\sqrt {\frac {2}{\pi }} \left (\int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) g(r,\theta ) \sin (\theta K[1])d\theta dr\right ) \sin \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right )}{| c| \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right ) j_{K[1],K[3]}}\right ) \sin (\theta K[1])}{a \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right )}\right )\right ) & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1\land c^2 \left (j_{K[1],K[3]}\right ){}^2>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✗
restart ;
pde := diff ( u ( r , theta, t), t$2) = c^2*VectorCalculus:-Laplacian(u(r,theta,t), ' polar ' [r,theta]);
ic := u(r, theta, 0) = f(r, theta) , ( D [3]( u ))( r , theta, 0) = g(r,theta);
bc := u(a, theta, t) = 0,
u(r, - Pi , t) = u(r, Pi , t),
( D [2]( u ))( r , - Pi , t) = ( D [2]( u ))( r , Pi , t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, theta ,t),HINT = boundedseries(r=0))),output= ' realtime ' ));
sol=()
Hand
solution
Assuming \(u=T\left ( t\right ) R\left ( r\right ) \Theta \left ( \theta \right ) \) and substituting in the PDE gives
\[ \frac {1}{c^{2}}T^{\prime \prime }R\Theta =R^{\prime \prime }T\Theta +\frac {1}{r}R^{\prime }T\Theta +\frac {1}{r^{2}}\Theta ^{\prime \prime }RT \]
Dividing by \(RT\Theta \)
\[ \frac {1}{c^{2}}\frac {T^{\prime \prime }}{T}=\frac {R^{\prime \prime }}{R}+\frac {1}{r}\frac {R^{\prime }}{R}+\frac {1}{r^{2}}\frac {\Theta ^{\prime \prime }}{\Theta }\]
Hence
\begin{align*} \frac {1}{c^{2}}\frac {T^{\prime \prime }}{T} & =-\lambda \\ \frac {R^{\prime \prime }}{R}+\frac {1}{r}\frac {R^{\prime }}{R}+\frac {1}{r^{2}}\frac {\Theta ^{\prime \prime }}{\Theta } & =-\lambda \end{align*}
The time ODE is
\[ T^{\prime \prime }+c^{2}\lambda T=0 \]
Now we separate again the space ODE’s (remember to move the \(\lambda \) with the \(R\) and not the \(\Theta \) )
\begin{align*} \frac {R^{\prime \prime }}{R}+\frac {1}{r}\frac {R^{\prime }}{R}+\lambda & =-\frac {1}{r^{2}}\frac {\Theta ^{\prime \prime }}{\Theta }\\ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}+r^{2}\lambda & =-\frac {\Theta ^{\prime \prime }}{\Theta }\end{align*}
Let the new separation constant be \(\mu \) , therefore
\begin{align*} -\frac {\Theta ^{\prime \prime }}{\Theta } & =\mu \\ \Theta ^{\prime \prime }+\mu \Theta & =0 \end{align*}
With periodic boundary conditions and
\begin{align*} r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}+r^{2}\lambda & =\mu \\ r^{2}R^{\prime \prime }+rR^{\prime }+\lambda r^{2}R-\mu R & =0\\ rR^{\prime \prime }+R^{\prime }-\frac {\mu }{r}R & =-\lambda rR \end{align*}
Now it is in Sturm Liouville form, where \(p=r,q=-\frac {\mu }{r},\sigma =r\) . This is singular SL. Can be written as
\[ R^{\prime \prime }+\frac {1}{r}R^{\prime }+\left ( \lambda -\frac {\mu }{r^{2}}\right ) R=0 \]
Before we solve the above \(R\) ODE, we solve the \(\Theta ^{\prime \prime }+\mu \Theta =0\) to find \(\mu \) Eigenvalues. The solution is
\[ \Theta =A\cos \left ( \sqrt {\mu }\theta \right ) +B\sin \left ( \sqrt {\mu }\theta \right ) \]
With B.C \(\Theta \left ( -\pi \right ) =\Theta \left ( \pi \right ) \) and \(\Theta ^{\prime }\left ( -\pi \right ) =\Theta ^{\prime }\left ( \pi \right ) \) . From first B.C. we obtain
\begin{align} A\cos \left ( \sqrt {\mu }\pi \right ) -B\sin \left ( \sqrt {\mu }\pi \right ) & =A\cos \left ( \sqrt {\mu }\pi \right ) +B\sin \left ( \sqrt {\mu }\pi \right ) \nonumber \\ 2B\sin \left ( \sqrt {\mu }\pi \right ) & =0\tag {1}\end{align}
Looking at second B.C. \(\Theta ^{\prime }\left ( -\pi \right ) =\Theta ^{\prime }\left ( \pi \right ) \)
\[ \Theta ^{\prime }\left ( \theta \right ) =-A\sqrt {\mu }\sin \left ( \sqrt {\mu }\theta \right ) +\sqrt {\mu }B\cos \left ( \sqrt {\mu }\theta \right ) \]
Hence
\begin{align} A\sqrt {\mu }\sin \left ( \sqrt {\mu }\pi \right ) +\sqrt {\mu }B\cos \left ( \sqrt {\mu }\pi \right ) & =-A\sqrt {\mu }\sin \left ( \sqrt {\mu }\pi \right ) +\sqrt {\mu }B\cos \left ( \sqrt {\mu }\pi \right ) \nonumber \\ A\sqrt {\mu }\sin \left ( \sqrt {\mu }\pi \right ) & =-A\sqrt {\mu }\sin \left ( \sqrt {\mu }\pi \right ) \nonumber \\ 2A\sin \left ( \sqrt {\mu }\pi \right ) & =0\tag {2}\end{align}
From (1,2), we see that both are satisfied if
\begin{align*} \sqrt {\mu }\pi & =n\pi \qquad n=1,2,3,\ldots \\ \mu & =n^{2}\end{align*}
Hence
\[ \Theta _{n}=A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \]
There is another solution for \(\mu =0\) which is constant (that is why one of the sums below starts from \(n=0\) ). We can combine the zero eigenvalue with the above and write
\[ \Theta _{n}=A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \qquad n=0,1,2,3,\ldots \]
Since at \(n=0\) the above reduces to constant \(A_{0}\) .
Now that we know \(\mu _{n}=n^{2}\) , from solving the \(\theta \) part, we go and solve the \(r\) ODE. For each \(n\) , the solution to the \(r\) (Bessel) ode
\[ R^{\prime \prime }+\frac {1}{r}R^{\prime }+\left ( \lambda -\frac {n^{2}}{r^{2}}\right ) R=0 \]
The solution turns out to be
\[ R_{nm}\left ( r\right ) =J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \qquad m=1,2,3,\cdots \]
Where \(\lambda _{nm}\) is found from roots of \(0=J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) \) giving the eigenvalues. Now the time ODE is solved
\begin{align*} T_{nm}^{\prime \prime }+c^{2}\lambda _{nm}T_{nm} & =0\\ T_{nm} & =C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \qquad n=0,1,2,3,\ldots ,m=1,2,3,\cdots \end{align*}
Hence the solution is
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }T_{nm}R_{nm}\Theta _{n}\\ & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\left ( C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \left ( A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ) \end{align*}
We now break this sum as follows
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\left ( C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) A_{n}\cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\left ( C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) B_{n}\sin \left ( n\theta \right ) \end{align*}
Or
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) A_{n}\cos \left ( n\theta \right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) A_{n}\cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) B_{n}\sin \left ( n\theta \right ) +D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) B_{n}\sin \left ( n\theta \right ) \end{align*}
Then we break the above into 4 sums
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) A_{n}\cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) A_{n}\cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) B_{n}\sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) B_{n}\sin \left ( n\theta \right ) \end{align*}
Finally, we merge constants in the above as follows
\begin{align*} A_{n}C_{nm} & \equiv A_{nm}\\ A_{n}D_{nm} & \equiv B_{nm}\\ B_{n}C_{nm} & \equiv C_{nm}\\ B_{n}D_{nm} & \equiv D_{nm}\end{align*}
Hence the final solution now becomes
\begin{align} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \nonumber \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \tag {3}\end{align}
Now initial conditions \(u\left ( r,\theta ,0\right ) =f\left ( r,\theta \right ) \) is used to find \(A_{nm},C_{nm}\,\) using orthogonality. At \(t=0\) the solution simplifies to (all terms with \(\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \) vanish giving
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
Hence
\begin{equation} f\left ( r,\theta \right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \tag {4}\end{equation}
When iterating over \(m\) index, the terms \(\cos \left ( n\theta \right ) \) and \(\sin \left ( n\theta \right ) \) will be constant. So for each \(n\) , we have \(\sum _{m=1}^{\infty }A_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \) and \(\sum _{m=1}^{\infty }C_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \) . So orthogonality is carried out on the \(m\) index on the Bessel functions. Multiplying (4) by \(J_{n}\left ( \sqrt {\lambda _{nk}}r\right ) \) and integrating
\begin{align*} \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nk}}r\right ) rdr & =\sum _{n=0}^{\infty }\left ( \int _{0}^{a}\sum _{m=1}^{\infty }A_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) J_{n}\left ( \sqrt {\lambda _{nk}}r\right ) rdr\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\left ( \int _{0}^{a}\sum _{m=1}^{\infty }C_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) J_{n}\left ( \sqrt {\lambda _{nk}}r\right ) rdr\right ) \sin \left ( n\theta \right ) \end{align*}
Or
\begin{align*} \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nk}}r\right ) rdr & =\sum _{n=0}^{\infty }A_{nk}\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nk}}r\right ) rdr\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }C_{nk}\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nk}}r\right ) rdr\right ) \sin \left ( n\theta \right ) \end{align*}
Replacing \(k\) back with \(m\) , the above becomes
\begin{align} \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) rdr & =\sum _{n=0}^{\infty }A_{nm}\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr\right ) \cos \left ( n\theta \right ) \nonumber \\ & +\sum _{n=1}^{\infty }C_{nm}\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr\right ) \sin \left ( n\theta \right ) \tag {5}\end{align}
We now apply orthogonality on \(n\) using the \(\cos \left ( n\theta \right ) \) results in
\[ \int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta =A_{nm}\int _{-\pi }^{\pi }\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr\right ) \cos ^{2}\left ( n\theta \right ) d\theta \]
But \(\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr\) does not depend on \(\theta \) , therefore the above becomes
\begin{align*} \int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta & =A_{nm}\left ( \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr\right ) \int _{-\pi }^{\pi }\cos ^{2}\left ( n\theta \right ) d\theta \\ & =A_{nm}\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr \end{align*}
Therefore
\[ A_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
Similarly for \(\sin \left ( n\theta \right ) \) , which gives
\[ C_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
Now we will look at the second initial conditions \(\frac {\partial u}{\partial t}\left ( r,\theta ,0\right ) =g\left ( r,\theta \right ) .\) Taking derivative w.r.t. time \(t\) of the solution in (3) gives
\begin{align*} \frac {\partial u}{\partial t}\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }-c\sqrt {\lambda _{nm}}A_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}B_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }-c\sqrt {\lambda _{nm}}C_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}D_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
At time \(t=0\) the above becomes (all terms with \(\sin \left ( c\sqrt {\lambda _{nm}}t\right ) \) vanish).
\begin{align*} g\left ( r,\theta \right ) = & \sum _{n=0}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}B_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}D_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
Now orthogonality is used. At \(t=0\) the above becomes
\begin{align*} g\left ( r,\theta \right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}B_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }c\sqrt {\lambda _{nm}}D_{nm}J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
Similarly to the above we now find \(B_{nm}\) and \(D_{nm}\) . The only difference, is that now we have extra \(c\sqrt {\lambda _{nm}}\) terms that show up. The final result will be
\[ B_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
And
\[ D_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
Summary of solution
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
\[ A_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ C_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ B_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
\[ D_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
With \(\lambda _{nm}\) being the solutions for \(0=J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) \) . For each \(n\) , we find \(\lambda _{n,1},\lambda _{n,2},\lambda _{n,3},\cdots \) , which are the zeros of the Bessel \(J_{n}\left ( x\right ) \) function. So for each \(n\) , there are infinite number of zeros. This generates all eigenvalues \(\lambda _{nm}\) . Hence \(\sqrt {\lambda _{nm}}a=BesselJZero\left ( n,m\right ) \) , therefore \(\sqrt {\lambda _{nm}}=\frac {a}{BesselJZero\left ( n,m\right ) }\)
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.7 [410] \(\theta \) dependency, fixed on edges, zero initial velocity, general solution
problem number 410
Solve for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} +\frac {1}{r^2} \frac {\partial ^2 u}{\partial \theta ^2} \right ) \]
With boundary conditions
\begin{align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end{align*}
With initial conditions
\begin{align*} u(r,\theta ,0) &= f(r,\theta ) \\ \frac {\partial u}{\partial t}(r,\theta ,0) &= 0 \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[r, theta, t], {t, 2}] == c^2*Laplacian[u[r,theta,t],{r,theta},"Polar"];
ic = {u[r, theta, 0] == f[r, theta], Derivative [0, 0, 1][u][r, theta, 0] == 0};
bc = {u[a, theta, t] == 0, u[r, - Pi , t] == u[r, Pi , t], Derivative [0, 1, 0][u][r, - Pi , t] == Derivative [0, 1, 0][u][r, Pi , t]};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a, a > 0, t > 0, - Pi < theta < Pi }], 60*10]];
\[\left \{\left \{u(r,\theta ,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[3]=1}{\overset {\infty }{\sum }}\frac {2 \operatorname {BesselJ}\left (0,\frac {r j_{0,K[3]}}{a}\right ) \cos \left (\frac {\sqrt {c^2} t j_{0,K[3]}}{a}\right ) \int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (0,\frac {r j_{0,K[3]}}{a}\right ) f(r,\theta )d\theta dr}{a^2 \pi \operatorname {BesselJ}\left (1,j_{0,K[3]}\right ){}^2}+\underset {K[3]=1}{\overset {\infty }{\sum }}\left (\underset {K[1]=1}{\overset {\infty }{\sum }}\left (\frac {2 \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right ) \cos (\theta K[1]) \int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos (\theta K[1]) f(r,\theta )d\theta dr}{a^2 \pi \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right ){}^2}+\frac {2 \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) \cos \left (\frac {\sqrt {c^2} t j_{K[1],K[3]}}{a}\right ) \left (\int _0^a\int _{-\pi }^{\pi }r \operatorname {BesselJ}\left (K[1],\frac {r j_{K[1],K[3]}}{a}\right ) f(r,\theta ) \sin (\theta K[1])d\theta dr\right ) \sin (\theta K[1])}{a^2 \pi \operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right ){}^2}\right )\right ) & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1\land c^2 \left (j_{K[1],K[3]}\right ){}^2>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✗
restart ;
pde := diff ( u ( r , theta, t), t$2) =c^2*VectorCalculus:-Laplacian(u(r,theta,t), ' polar ' [r,theta]);
ic := u(r, theta, 0) = f(r, theta) , ( D [3]( u ))( r , theta, 0) = 0;
bc := u(a, theta, t) = 0,
u(r, - Pi , t) = u(r, Pi , t),
( D [2]( u ))( r , - Pi , t) = ( D [2]( u ))( r , Pi , t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, theta ,t),HINT = boundedseries(r=0))),output= ' realtime ' ));
sol=()
Hand
solution
The basic solution for this type of PDE was already given in problem 5.2.2.6 on page 1390 as
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
\[ A_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ C_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ B_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
\[ D_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
With \(\lambda _{nm}\) being the solutions for \(0=J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) \) . For each \(n\) , we find \(\lambda _{n,1},\lambda _{n,2},\lambda _{n,3},\cdots \) , which are the zeros of the Bessel \(J_{n}\left ( x\right ) \) function. So for each \(n\) , there are infinite number of zeros. This generates all eigenvalues \(\lambda _{nm}\) . Hence \(\sqrt {\lambda _{nm}}a=BesselJZero\left ( n,m\right ) \) , therefore \(\sqrt {\lambda _{nm}}=\frac {a}{BesselJZero\left ( n,m\right ) }\) . Since \(g\left ( r,\theta \right ) =0\) in this case, then \(B_{nm}=0,D_{nm}=0\) and the solution simplifies to
\[ u\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.8 [411] \(\theta \) dependency, fixed on edges, zero initial velocity, specific example
problem number 411
Added January 11 2020.
Solve for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} +\frac {1}{r^2} \frac {\partial ^2 u}{\partial \theta ^2} \right ) \]
With boundary conditions
\begin{align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end{align*}
With initial conditions
\begin{align*} u(r,\theta ,0) &= f(r,\theta ) \\ \frac {\partial u}{\partial t}(r,\theta ,0) &= 0 \end{align*}
Using \(a=1,c=0.2,f(r,\theta )=r \theta \) .
Mathematica ✓
ClearAll [ " Global ` * " ];
f [ r_ , theta_ ]:= r * theta ;
c =2/10; a=1;
pde = D [u[r, theta, t], {t, 2}] == c^2*Laplacian[u[r,theta,t],{r,theta},"Polar"];
ic = {u[r, theta, 0] == f[r, theta], Derivative [0, 0, 1][u][r, theta, 0] == 0};
bc = {u[a, theta, t] == 0, u[r, - Pi , t] == u[r, Pi , t], Derivative [0, 1, 0][u][r, - Pi , t] == Derivative [0, 1, 0][u][r, Pi , t]};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a,t > 0, - Pi < theta < Pi }], 60*10]];
\[\left \{\left \{u(r,\theta ,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[3]=1}{\overset {\infty }{\sum }}\left (\underset {K[1]=1}{\overset {\infty }{\sum }}-\frac {(-1)^{K[1]} \operatorname {BesselJ}\left (K[1],r j_{K[1],K[3]}\right ) j_{K[1],K[3]} \cos \left (\frac {1}{5} t j_{K[1],K[3]}\right ) \operatorname {Gamma}\left (\frac {1}{2} (K[1]+3)\right ) \, _1\tilde {F}_2\left (\frac {1}{2} (K[1]+3);\frac {1}{2} (K[1]+5),K[1]+1;-\frac {1}{4} \left (j_{K[1],K[3]}\right ){}^2\right ) \sin (\theta K[1])}{\operatorname {BesselJ}\left (K[1]-1,j_{K[1],K[3]}\right ) \operatorname {Hypergeometric0F1Regularized}\left (K[1],-\frac {1}{4} \left (j_{K[1],K[3]}\right ){}^2\right ) K[1]}\right ) & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✗
restart ;
f :=( r , theta )-> r * theta ;
c :=2/10;
a :=1;
pde := diff ( u ( r , theta, t), t$2) = c^2*VectorCalculus:-Laplacian(u(r,theta,t), ' polar ' [r,theta]);
ic := u(r, theta, 0) = f(r, theta) , ( D [3]( u ))( r , theta, 0) = 0;
bc := u(a, theta, t) = 0,
u(r, - Pi , t) = u(r, Pi , t),
( D [2]( u ))( r , - Pi , t) = ( D [2]( u ))( r , Pi , t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, theta ,t),HINT = boundedseries(r=0))),output= ' realtime ' ));
sol=()
Hand
solution
The basic solution for this type of PDE was already given in problem 5.2.2.6 on page 1390 as
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
\[ A_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ C_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ B_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
\[ D_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
With \(\lambda _{nm}\) being the solutions for \(0=J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) \) . For each \(n\) , we find \(\lambda _{n,1},\lambda _{n,2},\lambda _{n,3},\cdots \) , which are the zeros of the Bessel \(J_{n}\left ( x\right ) \) function. So for each \(n\) , there are infinite number of zeros. This generates all eigenvalues \(\lambda _{nm}\) . Hence \(\sqrt {\lambda _{nm}}a=BesselJZero\left ( n,m\right ) \) , therefore \(\sqrt {\lambda _{nm}}=\frac {a}{BesselJZero\left ( n,m\right ) }\) .
In this problem \(g\left ( r,\theta \right ) =0,f\left ( r,\theta \right ) =r\theta ,a=1,c=\frac {2}{10}\) , then \(B_{nm}=0,D_{nm}=0\) and the solution simplifies to
\[ u\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( \frac {2}{10}\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( \frac {2}{10}\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \]
Where
\begin{align*} A_{nm} & =\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}r\theta J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\\ C_{nm} & =\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}r\theta J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\end{align*}
The following animations run for 80 seconds. They are for different \(n,m\,\ \) modes. (This only show in the HTML version)
5.2.2.8.0 Cases for \(n=0\)
5.2.2.8.0 Cases for \(n=1\)
5.2.2.8.0 Cases for \(n=2\)
5.2.2.8.0 Cases for \(n=3\)
Source code for all the above animations
(* By Nasser M. Abbasi*)
SetDirectory [ NotebookDirectory []]
X:\data\public_html\my_notes\PDE_animations\problems\4
(* definitions *)
ClearAll [ a , c , n , m , r , theta , f , g , u , maxM , maxN , t ]
maxN =4;
maxM =4;
a =1;
c =.2;
minZ =-8;
maxZ =10;
A0 [ n_ , m_ ]:= Module [{num,den,r,theta,f},
f = r * theta ;
num = Integrate [ f * BesselJ [n,lamtbl[[n+1,m]] r] Cos [n theta] r,{r,0,a},{theta,0,2 Pi }];
den = Integrate [( BesselJ [ n , lamtbl [[ n +1, m ]] r])^2 ( Cos [n theta])^2 r,{r,0,a},{theta,0,2 Pi }];
num / den
];
C0 [ n_ , m_ ]:= Module [{num,den,f,r,theta},
f=r*theta;
num= Integrate [f* BesselJ [n,lamtbl[[n+1,m]] r] Sin [n theta] r,{r,0,a},{theta,0,2 Pi }];
den= Integrate [( BesselJ [n,lamtbl[[n+1,m]] r])^2 ( Sin [n theta])^2 r,{r,0,a},{theta,0,2 Pi }];
num/den
];
lam [ n_ , m_ ]:= Module [{ x },
x=BesselJZero[n,m];
N [(x/a)]
];
u [ r_ , theta_ , t_ , maxN_ , maxM_ ]:= Module [{ tmp , n , m },
tmp= Sum [A0tbl[[n+1,m]]* Cos [c lamtbl[[n+1,m]] t] * BesselJ [n,lamtbl[[n+1,m]]*r]*
Cos [n*theta],{n,0,maxN},{m,1,maxM}];
tmp=tmp+ Sum [C0tbl[[n+1,m]]* Cos [c lamtbl[[n+1,m]] t] * BesselJ [n,lamtbl[[n+1,m]]*r]*
Sin [n*theta],{n,1,maxN},{m,1,maxM}]
];
lamtbl = Table [ lam [ n , m ],{ n ,0, maxN },{ m ,1, maxN }];
A0tbl = Table [ A0 [ n , m ],{ n ,0, maxN },{ m ,1, maxM }]
C0tbl = Table [ C0 [ n , m ],{ n ,1, maxN },{ m ,1, maxM }]
(* n =0, m =1 *)
ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0], Evaluate [u[r0,theta0,12,0,1]]},
{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}]
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,0,1]]},{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},
BaseStyle->15, ImageMargins ->5,PerformanceGoal->"Quality", Mesh ->10,
MaxRecursion ->1, BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 0, ", M = ",1}]],{t,0,80,.5}];
Export [ " anim_n_0_m_1 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =0, m =2 *)
ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0], Evaluate [u[r0,theta0,0,0,2]]},{r0,0,1},
{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}]
(* to speed it up, make Z in {t,0,100,Z} larger, and then make Z in Table[Z,{Length[r]}] smaller.*)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,0,2]]},{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},
BaseStyle->15, ImageMargins ->5,PerformanceGoal->"Quality", Mesh ->10,
MaxRecursion ->1, BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 0, ", M = ",2}]],{t,0,80,.5}];
Export [ " anim_n_0_m_2 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =0, m =3 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,0,3]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 0, ", M = ",3}]],{t,0,80,.5}];
Export [ " anim_n_0_m_3 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =0, m =4 *)
t =1;
ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0], Evaluate [u[r0,theta0,t,0,4]]},
{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},BaseStyle->15,
ImageMargins ->5,PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}]
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,0,4]]},{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},
BaseStyle->15, ImageMargins ->5,PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 0, ", M = ",4}]],{t,0,80,.5}];
Export [ " anim_n_0_m_4 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =1, m =1 *)
t =1;
ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,1,1]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Speed", Mesh ->10, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}]
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,1,1]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 1, ", M = ",1}]],{t,0,80,.5}];
Export [ " anim_n_1_m_1 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =1, m =2 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,1,2]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 1, ", M = ",2}]],{t,0,80,.5}];
Export [ " anim_n_1_m_2 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =1, m =3 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,1,3]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 1, ", M = ",3}]],{t,0,80,.5}];
Export [ " anim_n_1_m_3 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =1, m =4 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,1,4]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 1, ", M = ",4}]],{t,0,80,.5}];
Export [ " anim_n_1_m_4 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =2, m =1 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,2,1]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 2 ", M = ",1}]]
,{t,0,80,.5}];
Export [ " anim_n_2_m_1 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =2, m =2 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,2,2]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 2 ", M = ",2}]],{t,0,80,.5}];
Export [ " anim_n_2_m_2 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =2, m =3 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,2,3]]},{r0,0,1},{theta0,0,2 Pi }, AxesLabel ->{"r","theta","u"},
BaseStyle->15, ImageMargins ->5,PerformanceGoal->"Quality", Mesh ->10,
MaxRecursion ->1, BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 2 ", M = ",3}]],{t,0,80,.5}];
Export [ " anim_n_2_m_3 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =2, m =4 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,2,4]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 2 ", M = ",4}]],{t,0,80,.5}];
Export [ " anim_n_2_m_4 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =3, m =1 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,3,1]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 3 ", M = ",1}]],{t,0,80,.5}];
Export [ " anim_n_3_m_1 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =3, m =2 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,3,2]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1,
BoxRatios ->{1,1,1}, PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 3 ", M = ",2}]],{t,0,80,.5}];
Export [ " anim_n_3_m_2 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =3, m =3 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,3,3]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 3 ", M = ",3}]],{t,0,80,.5}];
Export [ " anim_n_3_m_3 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
(* n =3, m =4 *)
r = Table [ Labeled [ ParametricPlot3D [{ r0 Cos [theta0],r0 Sin [theta0],
Evaluate [u[r0,theta0,t,3,4]]},{r0,0,1},{theta0,0,2 Pi },
AxesLabel ->{"r","theta","u"},BaseStyle->15, ImageMargins ->5,
PerformanceGoal->"Quality", Mesh ->10, MaxRecursion ->1, BoxRatios ->{1,1,1},
PlotRange ->{ Automatic , Automatic ,{minZ,maxZ}}],
Row [{"time (sec)",Round@t,", N = ", 3 ", M = ",4}]],{t,0,80,.5}];
Export [ " anim_n_3_m_4 . gif " , r , " DisplayDurations " -> Table [.25,{ Length [ r ]}]]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.9 [412] \(\theta \) dependency, fixed on edges, zero initial position, specific example
problem number 412
Added January 11, 2020
Math 322 UW exam problem. 2018.
Solve for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \left ( \frac {\partial ^2 u}{\partial r^2} + \frac {1}{r} \frac {\partial u}{\partial r} +\frac {1}{r^2} \frac {\partial ^2 u}{\partial \theta ^2} \right ) \]
With boundary conditions
\begin{align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end{align*}
With initial conditions
\begin{align*} u\left ( r,\theta ,0\right ) & =0\\ u_{t}\left ( r,\theta ,0\right ) & =\left \{ \begin {array} [c]{ccc}\frac {1}{\pi \epsilon ^{2}} & & \text {if }r\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \end{align*}
Where \(0<\epsilon <1\)
Using \(a=1,c=1,\epsilon =\frac {1}{2}\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
a =1; c=1; epsilon=1/2;
f [ r_ , theta_ ]:=0;
g [ r_ , theta_ ]:= Piecewise [{{1/( Pi * epsilon ^2), r < epsilon },{0, True }}];
c =1; a=1;
pde = D [u[r, theta, t], {t, 2}] == c^2*Laplacian[u[r,theta,t],{r,theta},"Polar"];
ic = {u[r, theta, 0] == f[r, theta], Derivative [0, 0, 1][u][r, theta, 0] == g[r,theta]};
bc = {u[a, theta, t] == 0, u[r, - Pi , t] == u[r, Pi , t], Derivative [0, 1, 0][u][r, - Pi , t] == Derivative [0, 1, 0][u][r, Pi , t]};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a,t > 0, - Pi < theta < Pi }], 60*10]];
\[\left \{\left \{u(r,\theta ,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[3]=1}{\overset {\infty }{\sum }}\frac {2 \operatorname {BesselJ}\left (0,r j_{0,K[3]}\right ) \operatorname {Hypergeometric0F1Regularized}\left (2,-\frac {1}{16} \left (j_{0,K[3]}\right ){}^2\right ) \sin \left (t j_{0,K[3]}\right )}{\pi \operatorname {BesselJ}\left (1,j_{0,K[3]}\right ){}^2 j_{0,K[3]}} & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✗
restart ;
c :=1;
a :=1;
epsilon :=1/2;
f :=( r , theta )-> r * theta ;
g :=( r , theta )-> piecewise ( r < epsilon ,1/( Pi * epsilon ^2), true ,0);
pde := diff ( u ( r , theta, t), t$2) = c^2*VectorCalculus:-Laplacian(u(r,theta,t), ' polar ' [r,theta]);
ic := u(r, theta, 0) = f(r, theta) , ( D [3]( u ))( r , theta, 0) = g(r,theta);
bc := u(a, theta, t) = 0,
u(r, - Pi , t) = u(r, Pi , t),
( D [2]( u ))( r , - Pi , t) = ( D [2]( u ))( r , Pi , t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, theta ,t),HINT = boundedseries(r=0))),output= ' realtime ' ));
sol=()
Hand
solution
The basic solution for this type of PDE was already given in problem 5.2.2.6 on page 1390 as
\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }C_{nm}\cos \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \end{align*}
\[ A_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \cos \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ C_{nm}=\frac {\int _{-\pi }^{\pi }\left ( \int _{0}^{a}f\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr\right ) \sin \left ( n\theta \right ) d\theta }{\pi \int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) rdr}\]
\[ B_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
\[ D_{nm}=\frac {\int _{-\pi }^{\pi }\int _{0}^{a}g\left ( r,\theta \right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) r\ d\theta dr}{c\pi \sqrt {\lambda _{nm}}\int _{0}^{a}J_{n}^{2}\left ( \sqrt {\lambda _{nm}}r\right ) r\ dr}\]
With \(\lambda _{nm}\) being the solutions for \(0=J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) \) . For each \(n\) , we find \(\lambda _{n,1},\lambda _{n,2},\lambda _{n,3},\cdots \) , which are the zeros of the Bessel \(J_{n}\left ( x\right ) \) function. So for each \(n\) , there are infinite number of zeros. This generates all eigenvalues \(\lambda _{nm}\) . Hence \(\sqrt {\lambda _{nm}}a=BesselJZero\left ( n,m\right ) \) , therefore \(\sqrt {\lambda _{nm}}=\frac {a}{BesselJZero\left ( n,m\right ) }\) .
In this problem \(f\left ( r,\theta \right ) =0,a=1,c=1\) , then \(A_{nm}=0,C_{nm}=0\) and the solution simplifies to
\[ u\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( c\sqrt {\lambda _{nm}}t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \]
Taking time derivative gives
\[ u_{t}\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\cos \left ( n\theta \right ) \lambda _{nm}\cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( n\theta \right ) \lambda _{nm}\cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \]
Applying the second initial condition at \(t=0\) gives
\begin{equation} \sum _{n=0}^{\infty }\sum _{m=1}^{\infty }B_{nm}\cos \left ( n\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }D_{nm}\sin \left ( n\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{\pi \epsilon ^{2}} & & \text {if }r\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \tag {9}\end{equation}
Case \(n=0\) (9) becomes
\[ \sum _{m=1}^{\infty }B_{0m}\lambda _{0m}J_{0}\left ( \lambda _{0m}r\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{\pi \epsilon ^{2}} & & \text {if }r\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \]
Applying orthogonality on \(J_{0}\left ( \lambda _{0m}r\right ) \) results in
\begin{align} B_{0m}\lambda _{0m}\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr & =\frac {1}{\pi \epsilon ^{2}}\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr\nonumber \\ B_{0m} & =\frac {1}{\pi \epsilon ^{2}\lambda _{0m}}\frac {\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr}{\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr} \tag {9A}\end{align}
Case \(n>1\) Applying orthogonality on \(\cos \left ( n\theta \right ) ,\) equation (9) becomes
\begin{align*} \sum _{m=1}^{\infty }B_{nm}\left ( \int _{-\pi }^{\pi }\cos ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin {array} [c]{ccc}\frac {1}{\pi \epsilon ^{2}}\int _{-\pi }^{\pi }\cos \left ( n\theta \right ) d\theta & & \text {if }r^{2}\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \\ \sum _{m=1}^{\infty }\pi B_{nm}\lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin {array} [c]{ccc}0 & & \text {if }r^{2}\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \end{align*}
Hence \(B_{nm}=0\) for all \(n>0\) .
The same is now done to find \(\bar {D}_{nm}\) . Applying orthogonality on \(\sin \left ( n\theta \right ) ,\) equation (9) becomes
\begin{align*} \sum _{m=1}^{\infty }D_{nm}\left ( \int _{-\pi }^{\pi }\sin ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin {array} [c]{ccc}\frac {1}{\pi \epsilon ^{2}}\int _{-\pi }^{\pi }\sin \left ( n\theta \right ) d\theta & & \text {if }r^{2}\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \\ \sum _{m=1}^{\infty }D_{nm}\left ( \int _{-\pi }^{\pi }\sin ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin {array} [c]{ccc}0 & & \text {if }r^{2}\leq \epsilon \\ 0 & & \text {otherwise}\end {array} \right . \end{align*}
Hence all \(D_{nm}=0\) for all \(n>0\) .
Therefore the solution (8) reduces to only using \(n=0,m=1,2,3,\cdots \) . The solution can now be written as
\begin{equation} u\left ( r,\theta ,t\right ) =\sum _{m=1}^{\infty }B_{0m}\sin \left ( \lambda _{0m}t\right ) J_{0}\left ( \lambda _{0m}r\right ) \tag {10}\end{equation}
Where \(B_{0m}=\frac {1}{\pi \epsilon ^{2}\lambda _{0m}}\frac {\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr}{\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr}\) And \(\lambda _{0m}\) are all the positive zeros of \(J_{0}\left ( z\right ) \) , \(m=1,2,3,\cdots \) .
\(B_{0m}\) is now simplified more. Considering first the numerator of \(B_{0m}\) which is \(\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr\) . The hint given says that
\[ \frac {d}{dr}\left ( rJ_{1}\left ( r\right ) \right ) =rJ_{0}\left ( r\right ) \]
This is the same as saying
\begin{equation} rJ_{1}\left ( r\right ) =\int rJ_{0}\left ( r\right ) dr \tag {10A}\end{equation}
However the integral in \(B_{0m}\) is \(\int rJ_{0}\left ( \lambda _{0m}r\right ) dr\) and not \(\int rJ_{0}\left ( r\right ) dr\) . To transform it so that the hint can be used, let \(\lambda _{0m}r=\bar {r}\) , then \(\frac {dr}{d\bar {r}}=\frac {1}{\lambda _{0m}}\) or \(dr=\frac {d\bar {r}}{\lambda _{0m}}\) . Now \(\int rJ_{0}\left ( \lambda _{0m}r\right ) dr\) becomes \(\int \frac {\bar {r}}{\lambda _{0m}}J_{0}\left ( \bar {r}\right ) \frac {d\bar {r}}{\lambda _{0m}}\) or \(\frac {1}{\lambda _{0m}^{2}}\int \bar {r}J_{0}\left ( \bar {r}\right ) d\bar {r}\) and now the hint (10A) can be used on this integral giving
\[ \frac {1}{\lambda _{0m}^{2}}\left ( \int \bar {r}J_{0}\left ( \bar {r}\right ) d\bar {r}\right ) =\frac {1}{\lambda _{0m}^{2}}\left ( \bar {r}J_{1}\left ( \bar {r}\right ) \right ) \]
Replacing \(\bar {r}\) back by \(\lambda _{0m}r\) , gives the result needed
\begin{align*} \frac {1}{\lambda _{0m}^{2}}\left ( \bar {r}J_{1}\left ( \bar {r}\right ) \right ) & =\frac {1}{\lambda _{0m}^{2}}\left ( \lambda _{0m}rJ_{1}\left ( \lambda _{0m}r\right ) \right ) \\ & =\frac {1}{\lambda _{0m}}rJ_{1}\left ( \lambda _{0m}r\right ) \end{align*}
Now the limits are applied, using the fundamental theory of calculus
\begin{align} \int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr & =\frac {1}{\lambda _{0m}}\left [ rJ_{1}\left ( \lambda _{0m}r\right ) \right ] _{0}^{\epsilon }\nonumber \\ & =\frac {\epsilon }{\lambda _{0m}}J_{1}\left ( \lambda _{0m}\epsilon \right ) \tag {10B}\end{align}
This completes finding the numerator integral in \(B_{0m}\) . The denominator integral in \(B_{0m}\) is \(\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr\) . This was found before which is
\[ \int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr=\frac {1}{2}\left [ J_{0}^{\prime }\left ( \lambda _{0m}\right ) \right ] ^{2}\]
But \(J_{0}^{\prime }\left ( \lambda _{0m}\right ) =-J_{1}\left ( \lambda _{0m}\right ) \) , hence the above becomes
\begin{equation} \int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr=\frac {1}{2}J_{1}^{2}\left ( \lambda _{0m}\right ) \tag {10C}\end{equation}
Applying (10B) and (10C), \(B_{0m}\) simplifies to the following expression
\begin{align*} B_{0m} & =\frac {1}{\pi \epsilon ^{2}\lambda _{0m}}\frac {\frac {\epsilon }{\lambda _{0m}}J_{1}\left ( \lambda _{0m}\epsilon \right ) }{\frac {1}{2}J_{1}^{2}\left ( \lambda _{0m}\right ) }\\ & =\frac {2}{\pi \epsilon \lambda _{0m}^{2}}\frac {J_{1}\left ( \lambda _{0m}\epsilon \right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) }\end{align*}
Therefore the final solution becomes
\begin{align} u\left ( r,\theta ,t\right ) & =\sum _{m=1}^{\infty }B_{0m}\sin \left ( \lambda _{0m}t\right ) J_{0}\left ( \lambda _{0m}r\right ) \nonumber \\ u\left ( r,\theta ,t\right ) & =\frac {2}{\pi \epsilon }\sum _{m=1}^{\infty }\frac {1}{\lambda _{0m}^{2}}\frac {J_{1}\left ( \lambda _{0m}\epsilon \right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) }J_{0}\left ( \lambda _{0m}r\right ) \sin \left ( \lambda _{0m}t\right ) \tag {11}\end{align}
When \(\epsilon =\frac {1}{2}\) , the above solution (11) becomes
\begin{equation} u\left ( r,\theta ,t\right ) =\frac {4}{\pi }\sum _{m=1}^{\infty }\frac {1}{\lambda _{0m}^{2}}\frac {J_{1}\left ( \frac {1}{2}\lambda _{0m}\right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) }J_{0}\left ( \lambda _{0m}r\right ) \sin \left ( \lambda _{0m}t\right ) \tag {11A}\end{equation}
Here is animation for 5 seconds made in Mathematica
Mathematica Source code for all the above animations
(* By Nasser M. Abbasi. Animation of problem 4 solution*)
ClearAll [ t , r , m ];
padIt2 [ v_ , f_List ]:= AccountingForm [ v , f , NumberSigns ->{ " " , " " },
NumberPadding ->{"0","0"}, SignPadding -> True ];
nTerms =40;
lam = Table [ BesselJZero[0,m],{m,1,nTerms}]// N ;
c = Table [1/lam[[m]]^2 BesselJ [1,lam[[m]]/2]/ BesselJ [1,lam[[m]] ]^2,{m,1,nTerms}];
mySol [ r_ , t_ ]:=4/ Pi Sum [c[[m]] BesselJ [0,lam[[m]] r] Sin [lam[[m]] t],{m,1,nTerms}];
frames = Table [
Print ["t=",t];
Grid [{
{ Row [{"time = ",padIt2[t,{3,2}]}]},
{ ParametricPlot3D [{r Cos [theta],r Sin [theta],mySol[r,t]},{r,0,1},{theta,0,2 Pi },
PlotRange ->{ Automatic , Automatic ,{-0.6,0.6}},
PerformanceGoal->"Speed", Boxed -> True ,
Axes -> True , Mesh ->20,
ViewPoint ->{2.17,-2.4,1},
ImageSize ->400,
BoxRatios ->{1, 1, 1}]
}}],
{t,0,5,0.05}
];
Manipulate [
frames[[i]],
{{i,1,"time"},1,Length@frames,1,Appearance->"Labeled"}
]
Export [ " anim . gif " , frames , " DisplayDurations " -> Table [.2,{ Length@frames }]]
Here is the same animation made in Maple 2018
Maple source code for all the above animations
# by Nasser M. Abbasi, May 23,2018
restart ;
currentdir (" X :/ data / public_html / my_notes / PDE_animations / problems / wave_disk_exam_problem_4 ");
nTerms := 20:
lam := evalf([BesselJZeros(0,1..nTerms)]):
c := seq(1/lam[n]^2*BesselJ(1,lam[n]/2)/BesselJ(1,lam[n])^2,n=1..nTerms):
mySol := proc(r,t)
local n;
4/Pi*sum(c[n]*BesselJ(0,lam[n]*r)*sin(lam[n]*t),n=1..nTerms);
end proc:
maxTime := 5: (*seconds*)
delay := 0.05:
nFrames := round(maxTime/delay):
frames := [seq( plot3d([ r, theta, mySol(r,(i*delay)) ],
r = 0..1,
theta = 0..2*Pi,
coords = cylindrical,
axes = none,
title = sprintf("%s %3.2f %s","time ",(i*delay),"seconds")
),
i=0..nFrames-1)
]:
plots :- display ( convert ( frames , list ), insequence = true );
Here is the same animation made in Matlab 2016a
Matlab source code for all the above animations
function nma_HW4_math_322
% By Nasser M. Abbasi, May 23, 2018
close all ;
GENERATE_GIF = true ; % turn to false to not generate animated gif
lam = zeros (80,1); % eigenvalues
for i = 1:80
lam(i) = fzero ( @ ( x ) besselj (0, x ), i );
end ;
lam = uniquetol(lam); % must use uniquetol
nTerms = 20;
c = zeros ( nTerms ,1);
for i = 1:nTerms
c(i) = 1/lam(i)^2*besselj(1,lam(i)/2)/besselj(1,lam(i))^2;
end
% ------------- inner function --------
function tot = mySol(r,t)
tot = 0;
for ii =1:nTerms
tot = tot + (c(ii)*besselj(0,lam(ii).*r).* sin ( lam ( ii )* t ));
end ;
tot = 4/ pi * tot ;
end
% -------------------
maxTime = 5; % seconds
delay = 0.05;
nFrames = round ( maxTime / delay );
r = 0:.05:1;
phi = 0: pi /20:2* pi ;
[ R , PHI ] = meshgrid ( r , phi );
fig_handle = figure ();
set ( fig_handle , ' Name ' ,....
' Math 322, Final exam problem 4 animations by Nasser M. Abbasi ' );
for i=1:nFrames
Z = mySol(R,((i-1)*delay));
surf ( R .* cos ( PHI ), R.* sin ( PHI ), Z);
set ( gca , ' nextplot ' , ' replacechildren ' , ' visible ' , ' on ' );
colormap cool ;
title ( sprintf ( ' time = %3.2f ' , (i-1)*delay));
zlim([-0.6 0.6]);
drawnow ;
pause (.01);
if GENERATE_GIF
frame = getframe ( gcf );
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 1
imwrite(imind,cm, ' matlab_animations . gif ' , ' gif ' , ...
' DelayTime ' ,0.1, ' LoopCount ' ,0);
else
imwrite(imind,cm, ' matlab_animations . gif ' , ' gif ' ,...
' WriteMode ' , ' append ' , ' DelayTime ' ,0.1, ' LoopCount ' ,0);
end
end
end
end
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.2.2.10 [413] \(\theta \) dependency, fixed on edges, zero initial position with internal source (Haberman 8.5.5. (b)
problem number 413
Added January 15, 2020
Problem 8.5.5. (b) Richard Haberman applied partial di fb00erential equations book, 5th edition
Solve wave PDE inside circular membrane for \(u(r,\theta ,t)\) with \(0<r<a\) and \(t>0\) and \(-\pi <\theta <\pi \)
\[ u_{tt} = c^2 \nabla ^2 u(r,\theta ) + Q(r,\theta ,t) \]
With boundary conditions
\begin{align*} u(a,\theta ,t) &=0 \\ |u(0,\theta ,t)| < \infty \\ u(r,-\pi ,t) &= u(r,\pi ,t) \\ \frac {\partial u}{\partial \theta }(r,-\pi ,t) &= \frac {\partial u}{\partial \theta }(r,\pi ,t)\\ \end{align*}
With initial conditions
\begin{align*} u\left ( r,\theta ,0\right ) & =f(r,\theta )\\ u_{t}\left ( r,\theta ,0\right ) & =0 \end{align*}
Mathematica ✗
ClearAll [ " Global ` * " ];
pde = D [u[r, theta, t], {t, 2}] == c^2*Laplacian[u[r,theta,t],{r,theta},"Polar"]+Q[r,theta,t];
ic = {u[r, theta, 0] == f[r, theta], Derivative [0, 0, 1][u][r, theta, 0] == 0};
bc = {u[a, theta, t] == 0, u[r, - Pi , t] == u[r, Pi , t], Derivative [0, 1, 0][u][r, - Pi , t] == Derivative [0, 1, 0][u][r, Pi , t]};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[r, theta, t], {r, theta, t}, Assumptions -> {0 < r < a,t > 0, - Pi < theta < Pi }], 60*10]];
Failed
Maple ✗
restart ;
pde := diff ( u ( r , theta, t), t$2) = c^2*VectorCalculus:-Laplacian(u(r,theta,t), ' polar ' [r,theta])+Q(r,theta,t);
ic := u(r, theta, 0) = f(r, theta) , ( D [3]( u ))( r , theta, 0) = 0;
bc := u(a, theta, t) = 0,
u(r, - Pi , t) = u(r, Pi , t),
( D [2]( u ))( r , - Pi , t) = ( D [2]( u ))( r , Pi , t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(r, theta ,t),HINT = boundedseries(r=0)) assuming r>0,r<a),output= ' realtime ' ));
sol=()
Hand
solution
The solution to the corresponding homogeneous wave PDE
\[ \frac {\partial ^{2}u}{\partial t^{2}}=c^{2}\nabla ^{2}\]
Is known to be
\[ u\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }a_{n}\left ( t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }a_{n}\left ( t\right ) J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \sin \left ( n\theta \right ) \]
Where \(\lambda _{nm}\) are found by solving roots of \(J_{n}\left ( \sqrt {\lambda _{nm}}a\right ) =0\) . To make things simpler, we will write
\[ u\left ( r,\theta ,t\right ) =\sum _{i}a_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \]
Where the above means the double sum of all eigenvalues \(\lambda _{i}\) . So \(\Phi _{i}\left ( r,\theta \right ) \) represents \(J_{n}\left ( \sqrt {\lambda _{nm}}r\right ) \left \{ \cos \left ( n\theta \right ) ,\sin \left ( \theta \right ) \right \} \) combined. So double sum is implied everywhere. Given this, we now expand the source term
\[ Q\left ( r,\theta ,t\right ) =\sum _{i}q_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \]
And the original PDE becomes
\begin{equation} \sum _{i}a_{i}^{\prime \prime }\left ( t\right ) \Phi \left ( \lambda _{i}\right ) =c^{2}\sum _{i}a_{i}\left ( t\right ) \nabla ^{2}\left ( \Phi _{i}\left ( r,\theta \right ) \right ) +\sum _{i}q_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \tag {1}\end{equation}
But
\[ \nabla ^{2}\left ( \Phi _{i}\left ( r,\theta \right ) \right ) =-\lambda _{i}\Phi _{i}\left ( r,\theta \right ) \]
Hence (1) becomes
\begin{align*} \sum _{i}a_{i}^{\prime \prime }\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) +c^{2}\lambda _{i}a_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) & =\sum _{i}q_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \\ \sum _{i}\left ( a_{i}^{\prime \prime }\left ( t\right ) +c^{2}\lambda _{i}a_{i}\left ( t\right ) \right ) \Phi _{i}\left ( r,\theta \right ) & =\sum _{i}q_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \end{align*}
Applying orthogonality gives
\[ a_{i}^{\prime \prime }\left ( t\right ) +c^{2}\lambda _{i}a_{i}\left ( t\right ) =q_{i}\left ( t\right ) \]
Where
\[ q_{i}\left ( t\right ) =\frac {\int _{0}^{a}\int _{-\pi }^{\pi }Q\left ( r,\theta ,t\right ) \Phi _{i}\left ( r,\theta \right ) rdrd\theta }{\int _{0}^{a}\int _{-\pi }^{\pi }\Phi _{i}^{2}\left ( r,\theta \right ) rdrd\theta }\]
The solution to the homogenous ODE is
\[ a_{i}^{h}\left ( t\right ) =A_{i}\cos \left ( c\sqrt {\lambda _{i}}t\right ) +B_{i}\sin \left ( c\sqrt {\lambda _{i}}t\right ) \]
And the particular solution is found if we know what \(Q\left ( r,\theta ,t\right ) \) and hence \(q_{i}\left ( t\right ) \) . For now, lets call the particular solution as \(a_{i}^{p}\left ( t\right ) \) . Hence the solution for \(a_{i}\left ( t\right ) \) is
\[ a_{i}\left ( t\right ) =A_{i}\cos \left ( c\sqrt {\lambda _{i}}t\right ) +B_{i}\sin \left ( c\sqrt {\lambda _{i}}t\right ) +a_{i}^{p}\left ( t\right ) \]
Plugging the above into the \(u\left ( r,\theta ,t\right ) =\sum _{i}a_{i}\left ( t\right ) \Phi _{i}\left ( r,\theta \right ) \) , gives
\begin{equation} u\left ( r,\theta ,t\right ) =\sum _{i}\left ( A_{i}\cos \left ( c\sqrt {\lambda _{i}}t\right ) +B_{i}\sin \left ( c\sqrt {\lambda _{i}}t\right ) +a_{i}^{p}\left ( t\right ) \right ) \Phi _{i}\left ( r,\theta \right ) \tag {2}\end{equation}
We now find \(A_{i},B_{i}\) from initial conditions. At \(t=0\)
\[ f\left ( r,\theta \right ) =\sum _{i}\left ( A_{i}+a_{i}^{p}\left ( 0\right ) \right ) \Phi _{i}\left ( r,\theta \right ) \]
Applying orthogonality
\begin{align*} \int _{0}^{a}\int _{-\pi }^{\pi }f\left ( r,\theta \right ) \Phi _{j}\left ( r,\theta \right ) rdrd\theta & =\int _{0}^{a}\int _{-\pi }^{\pi }\sum _{i}\left ( A_{i}+a_{i}^{p}\left ( 0\right ) \right ) \Phi _{i}\left ( r,\theta \right ) \Phi _{j}\left ( r,\theta \right ) rdrd\theta \\ \int _{0}^{a}\int _{-\pi }^{\pi }f\left ( r,\theta \right ) \Phi _{j}\left ( r,\theta \right ) rdrd\theta & =\left ( A_{j}+a_{j}^{p}\left ( 0\right ) \right ) \int _{0}^{a}\int _{-\pi }^{\pi }\Phi _{j}^{2}\left ( r,\theta \right ) rdrd\theta \\ \left ( A_{i}+a_{i}^{p}\left ( 0\right ) \right ) & =\frac {\int _{0}^{a}\int _{-\pi }^{\pi }f\left ( r,\theta \right ) \Phi _{i}\left ( r,\theta \right ) rdrd\theta }{\int _{0}^{a}\int _{-\pi }^{\pi }\Phi _{i}^{2}\left ( r,\theta \right ) rdrd\theta }\end{align*}
Taking time derivative of (2)
\[ \frac {\partial u\left ( r,\theta ,t\right ) }{\partial t}=\sum _{i}\left ( -A_{i}c\sqrt {\lambda _{i}}\sin \left ( c\sqrt {\lambda _{i}}t\right ) +c\sqrt {\lambda _{i}}B_{i}\cos \left ( c\sqrt {\lambda _{i}}t\right ) +\frac {da_{i}^{p}\left ( t\right ) }{dt}\right ) \Phi _{i}\left ( r,\theta \right ) \]
At \(t=0\)
\[ 0=\sum _{i}\left ( c\sqrt {\lambda _{i}}B_{i}+\frac {da_{i}^{p}\left ( 0\right ) }{dt}\right ) \Phi _{i}\left ( r,\theta \right ) \]
Hence \(B_{i}=0\) . Therefore the final solution is
\[ u\left ( r,\theta ,t\right ) =\sum _{i}\left ( A_{i}\cos \left ( c\sqrt {\lambda _{i}}t\right ) +a_{i}^{p}\left ( t\right ) \right ) \Phi _{i}\left ( r,\theta \right ) \]
Where
\[ \left ( A_{i}+a_{i}^{p}\left ( 0\right ) \right ) =\frac {\int _{0}^{a}\int _{-\pi }^{\pi }f\left ( r,\theta \right ) \Phi _{i}\left ( r,\theta \right ) rdrd\theta }{\int _{0}^{a}\int _{-\pi }^{\pi }\Phi _{i}^{2}\left ( r,\theta \right ) rdrd\theta }\]
This complete the solution.