5.1.2 Semi-infinite domain
5.1.2.1 [364] Left end fixed, (general case)
problem number 364
Added July 12, 2019 Solve for \(u(x,t)\) with \(t>0\) and \(x>0\)
\[ u_{tt} = c^2 u_{xx} \]
With boundary conditions
\begin{align*} u(0,t) &= 0 \end{align*}
With initial conditions
\begin{align*} u_t(x,0) &=0 \\ u(x,0) &= f(x) \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
bc = u[0, t] == 0;
ic = {u[x, 0] == f[x], Derivative [0, 1][u][x, 0] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, bc, ic}, u[x, t], {x, t}, Assumptions -> {t > 0,x > 0,c>0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {1}{2} (f(x-c t)+f(c t+x)) & x>c t \\ \frac {1}{2} (f(c t+x)-f(c t-x)) & x\leq c t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
interface ( showassumed =0);
pde := diff ( u ( x , t ), t$2 )= c ^2* diff ( u ( x , t ), x$2 );
ic := u(x,0)=f(x), D [2]( u )( x ,0)=0;
bc := u(0,t)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic , bc ], u ( x , t ), HINT = boundedseries(x=0)) assuming t>0,x>0,c>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\mathcal {L}^{-1}\left ({\mathrm e}^{-\frac {s x}{c}} \int _{}^{0}{\mathrm e}^{-\frac {s \textit {\_a}}{c}} f \left (\textit {\_a} \right )d \textit {\_a} , s , t\right )-\mathcal {L}^{-1}\left ({\mathrm e}^{-\frac {s x}{c}} \int _{}^{0}{\mathrm e}^{\frac {s \textit {\_a}}{c}} f \left (\textit {\_a} \right )d \textit {\_a} , s , t\right )-\mathcal {L}^{-1}\left ({\mathrm e}^{\frac {s x}{c}} \int {\mathrm e}^{-\frac {s x}{c}} f \left (x \right )d x , s , t\right )+\mathcal {L}^{-1}\left ({\mathrm e}^{-\frac {s x}{c}} \int {\mathrm e}^{\frac {s x}{c}} f \left (x \right )d x , s , t\right )}{2 c}\]
Hand
solution
Solving on semi-infinite domain for \(u(x,t)\)
\begin{equation} \frac {\partial ^{2}u}{\partial t^{2}}=c^{2}\frac {\partial ^{2}u}{\partial x^{2}}\qquad 0<x<\infty ,t>0\tag {1}\end{equation}
With BC
\begin{align*} u\left ( 0,t\right ) & =0\\ u\left ( \infty ,t\right ) & <\infty \end{align*}
And initial conditions
\begin{align*} u\left ( x,0\right ) & =f\left ( x\right ) \\ u_{t}\left ( x,0\right ) & =0 \end{align*}
Seperation of variables method
Let \(u\left ( x,t\right ) =X\left ( x\right ) T\left ( t\right ) \) . The PDE in (1) becomes
\[ \frac {T^{\prime \prime }}{c^{2}T}=\frac {X^{\prime \prime }}{X}=-\lambda \]
Hence
\begin{align*} X^{\prime \prime }+\lambda X & =0\\ X\left ( 0\right ) & =0\\ X\left ( \infty \right ) & <\infty \end{align*}
It is clear that \(\lambda \) can not be negative because it gives a solution that blows up. For \(\lambda =0\) , the solution is \(X\left ( x\right ) =Ax+B\) and because \(X\left ( 0\right ) =0\) this implies \(B=0\) . Hence solution is \(X\left ( x\right ) =Ax\) . And this blows up as \(x\) increases unless \(A=0\) . Hence \(\lambda =0\) is not valid eigenvalue. Therefore \(\lambda >0\) . Let \(\lambda =\alpha ^{2},\alpha >0\) and the solution becomes
\[ X\left ( x\right ) =A_{\alpha }\cos \left ( \alpha x\right ) +B_{\alpha }\sin \left ( \alpha x\right ) \]
At \(x=0\) the above gives
\[ 0=A_{\alpha }\]
Therefore the solution becomes
\begin{equation} X_{\alpha }\left ( x\right ) =B_{\alpha }\sin \left ( \alpha x\right ) \qquad \alpha >0\tag {1}\end{equation}
The time domain ODE becomes
\begin{align*} T^{\prime \prime }+c^{2}\alpha ^{2}T & =0\\ T & =C_{\alpha }\cos \left ( \alpha ct\right ) +D_{\alpha }\sin \left ( \alpha ct\right ) \\ T^{\prime }\left ( t\right ) & =-c\alpha C_{\alpha }\sin \left ( \alpha ct\right ) +c\alpha D_{\alpha }\cos \left ( \alpha ct\right ) \end{align*}
And at \(t=0,T^{\prime }\left ( 0\right ) =0\) , hence the above becomes
\[ 0=c\alpha D_{\alpha }\]
Which means \(D_{\alpha }=0\) . Therefore
\begin{equation} T=C_{\alpha }\cos \left ( \alpha ct\right ) \qquad \alpha >0\tag {2}\end{equation}
From (1,2) the complete solution is therefore
\begin{equation} u\left ( x,t\right ) =\int _{0}^{\infty }A_{\alpha }\cos \left ( \alpha ct\right ) \sin \left ( \alpha x\right ) d\alpha \tag {3}\end{equation}
Where \(A_{\alpha },C_{\alpha }\) are merged into one constant. Now the last initial condition is applied, which is \(u\left ( x,0\right ) =f\left ( x\right ) \) to the above which gives
\[ f\left ( x\right ) =\int _{0}^{\infty }A_{\alpha }\sin \left ( \alpha x\right ) d\alpha \]
Hence
\[ A_{\alpha }=\frac {2}{\pi }\int _{0}^{\infty }f\left ( x\right ) \sin \left ( \alpha x\right ) dx \]
Using the above in (3) gives the final solution as
\[ u\left ( x,t\right ) =\frac {2}{\pi }\int _{0}^{\infty }\left ( \int _{0}^{\infty }f\left ( s\right ) \sin \left ( \alpha s\right ) ds\right ) \cos \left ( \alpha ct\right ) \sin \left ( \alpha x\right ) d\alpha \]
D’Alambert’s formula method
For the half line, the D’Alambert’s is given by, using \(v_{0}\left ( x\right ) =u_{t}\left ( x,0\right ) \) as the initial velocity
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{2}\left ( f\left ( x+ct\right ) +f\left ( x-ct\right ) \right ) +\frac {1}{2c}\int _{x-ct}^{x+ct}v_{0}\left ( s\right ) ds & & x>ct\geq 0\\ & & \\ \frac {1}{2}\left ( f\left ( x+ct\right ) -f\left ( ct-x\right ) \right ) +\frac {1}{2c}\int _{ct-x}^{x+ct}v_{0}\left ( s\right ) ds & & x\leq ct \end {array} \right . \]
Hence, since \(u_{t}\left ( x,0\right ) =0\) in this problem
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{2}\left ( f\left ( x+ct\right ) +f\left ( x-ct\right ) \right ) & & x>ct\geq 0\\ & & \\ \frac {1}{2}\left ( f\left ( x+ct\right ) -f\left ( ct-x\right ) \right ) & & x\leq ct \end {array} \right . \]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.2 [365] Left end fixed with specific initial position
problem number 365
Taken from Mathematica DSolve help pages.
Solve for \(u(x,t)\) initial value wave PDE on infinite domain with \(t>0\) and \(x>0\) .
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= \sin ^2(x) \hspace {20pt} \pi <x< 2\pi \\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
And boundary conditions \(u(0,t)=0\)
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == Piecewise [{{ Sin [x]^2, Pi < x < 2* Pi }}], Derivative [0, 1][u][x, 0] == 0};
bc = u[0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions ->c>0], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} \sin ^2(c t-x) & \pi <x-c t<2 \pi \\ 0 & \text {True} \\\end {array} \\\end {array}\right )+\left (\begin {array}{cc} \{ & \begin {array}{cc} \sin ^2(c t+x) & \pi <c t+x<2 \pi \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & x>c t\geq 0 \\ \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} \sin ^2(c t+x) & \pi <c t+x<2 \pi \\ 0 & \text {True} \\\end {array} \\\end {array}\right )-\left (\begin {array}{cc} \{ & \begin {array}{cc} \sin ^2(c t-x) & \pi <c t-x<2 \pi \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & 0\leq x\leq c t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = c^2 * diff ( u ( x , t), x$2);
ic := u(x,0)= piecewise ( Pi < x and x<2* Pi , sin ( x )^2),( D [2]( u ))( x ,0)=0;
bc := u(0,t)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic , bc ], u ( x , t )) assuming t>0 and x>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} \left (\left \{\begin {array}{cc} 0 & c t +x \le \pi \\ \sin \left (c t +x \right )^{2} & c t +x <2 \pi \\ 0 & 2 \pi \le c t +x \end {array}\right .\right )-\left (\left \{\begin {array}{cc} 0 & c t -x \le \pi \\ \sin \left (c t -x \right )^{2} & c t -x <2 \pi \\ 0 & 2 \pi \le c t -x \end {array}\right .\right ) & x <c t \\ \left (\left \{\begin {array}{cc} 0 & c t +x \le \pi \\ \sin \left (c t +x \right )^{2} & c t +x <2 \pi \\ 0 & 2 \pi \le c t +x \end {array}\right .\right )+\left (\left \{\begin {array}{cc} 0 & -c t +x \le \pi \\ \sin \left (c t -x \right )^{2} & -c t +x <2 \pi \\ 0 & 2 \pi \le -c t +x \end {array}\right .\right ) & c t <x \end {array}\right .\right )}{2}\]
Hand
solution
Solving on semi-infinite domain
\begin{align} u_{tt} & =c^{2}u_{xx}\qquad t>0,x>0\tag {1}\\ u\left ( 0,t\right ) & =0\nonumber \\ u\left ( x,0\right ) & =f\left ( x\right ) =\sin ^{2}\left ( x\right ) \qquad \pi <x<2\pi \nonumber \end{align}
With \(k>0\) and \(u\left ( x,t\right ) <\infty \) as \(x\rightarrow \infty \) . This means \(u\left ( x,t\right ) \) is bounded. The general solution to the above PDE was given in problem 5.1.2.1 on page 1214 as (using the D’Alambert’s solution and not the Fourier integral solution)
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{2}\left ( f\left ( x+ct\right ) +f\left ( x-ct\right ) \right ) & & x>ct\geq 0\\ & & \\ \frac {1}{2}\left ( f\left ( x+ct\right ) -f\left ( ct-x\right ) \right ) & & x\leq ct \end {array} \right . \]
But \(f\left ( x\right ) =\sin ^{2}\left ( x\right ) \) and the above becomes
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\frac {1}{2}\left ( \sin ^{2}\left ( x+ct\right ) +\sin ^{2}\left ( x-ct\right ) \right ) & & x>ct\geq 0\\ & & \\ \frac {1}{2}\left ( \sin ^{2}\left ( x+ct\right ) -\sin ^{2}\left ( ct-x\right ) \right ) & & x\leq ct \end {array} \right . \]
But here \(f\left ( x\right ) \) is restricted to \(\pi <x<2\pi \) . Hence the above solution is modified as follows
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\left \{ \begin {array} [c]{ccc}\frac {1}{2}\sin ^{2}\left ( x+ct\right ) & & \pi <x+ct<2\pi \\ 0 & & \text {otherwise}\end {array} \right . +\left \{ \begin {array} [c]{ccc}\frac {1}{2}\sin ^{2}\left ( x-ct\right ) & & \pi <x-ct<2\pi \\ 0 & & \text {otherwise}\end {array} \right . & & x>ct\geq 0\\ & & \\ \left \{ \begin {array} [c]{ccc}\frac {1}{2}\sin ^{2}\left ( x+ct\right ) & & \pi <x+ct<2\pi \\ 0 & & \text {otherwise}\end {array} \right . -\left \{ \begin {array} [c]{ccc}\frac {1}{2}\sin ^{2}\left ( ct-x\right ) & & \pi <ct-x<2\pi \\ 0 & & \text {otherwise}\end {array} \right . & & 0<x\leq ct \end {array} \right . \]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.3 [366] Logan page 115, left end fixed with source
problem number 366
This is problem at page 115, David J Logan textbook, applied PDE textbook.
Falling cable lying on a table that is suddenly removed.
\[ u_{tt} = c^2 u_{xx} - g \]
With boundary condition
\begin{align*} u(0,t) &= 0 \end{align*}
And initial conditions
\begin{align*} u(x,0) &= 0 \\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}] - g;
bc = u[0, t] == 0;
ic = {u[x, 0] == 0, Derivative [0, 1][u][x, 0] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, bc, ic}, u[x, t], {x, t}, Assumptions -> {t > 0, c > 0, x > 0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} -\frac {g t^2}{2} & c t\leq x \\ \frac {g x (x-2 c t)}{2 c^2} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
interface ( showassumed =0);
pde := diff ( u ( x , t ), t$2 )= c ^2* diff ( u ( x , t ), x$2 )- g ;
ic := D [2]( u )( x ,0)=0, u (0, t )=0, u ( x ,0)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic ], u ( x , t ), HINT = boundedseries) assuming t>0,x>0,c>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {g \left (\operatorname {Heaviside}\left (t -\frac {x}{c}\right ) \left (t c -x \right )^{2}-t^{2} c^{2}\right )}{2 c^{2}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.4 [367] Left moving boundary condition
problem number 367
Solve for \(u(x,t)\) with \(t>0\) and \(x>0\)
\[ \frac {\partial ^2 u}{\partial t^2} = c^2 \frac {\partial ^2 u}{\partial x^2} \]
With boundary conditions
\begin{align*} u(0,t) &= g(t) \end{align*}
With initial conditions
\begin{align*} \frac {\partial u}{\partial t}(x,0) &=0 \\ u(x,0) &= 0 \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
bc = u[0, t] == g[t];
ic = {u[x, 0] == 0, Derivative [0, 1][u][x, 0] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, bc, ic}, u[x, t], {x, t}, Assumptions -> {t > 0,c > 0, x > 0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & x>c t \\ g\left (t-\frac {x}{c}\right ) & x\leq c t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
interface ( showassumed =0);
pde := diff ( u ( x , t ), t$2 )= c ^2* diff ( u ( x , t ), x$2 );
ic := u(x,0)=0, D [2]( u )( x ,0)=0;
bc := u(0,t)=g(t);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic , bc ], u ( x , t ), HINT = boundedseries(x=0)) assuming t>0,x>0,c>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \mathcal {L}^{-1}\left (\mathcal {L}\left (g \left (t \right ), t , s\right ) {\mathrm e}^{\frac {s x}{c}}, s , t\right )\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.5 [368] moving Left end
problem number 368
Taken from Mathematica DSolve help pages. Initial value problem with a Neumann condition on the half-line.
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= \sin ^3(x) \\ \frac {\partial u}{\partial t}(x,0) &= 1-e^{- \frac {x}{10}} \end{align*}
And boundary conditions \(\frac {\partial u}{\partial x}(0,t)=1\)
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == Sin [x]^3, Derivative [0, 1][u][x, 0] == 1 - E ^(-(x/10))};
bc = Derivative [1, 0][u][0, t] == 1;
sol = AbsoluteTiming [ TimeConstrained [DSolveValue[{pde, ic, bc}, u[x, t], {x, t}, Assumptions ->c>0], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & x>c t \\ g\left (t-\frac {x}{c}\right ) & x\leq c t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = c^2 * diff ( u ( x , t), x$2);
ic := u(x,0)= sin ( x )^3,( D [2]( u ))( x ,0)=1- exp (- x /10);
bc :=( D [1]( u ))(0, t )=1;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic , bc ], u ( x , t )) assuming t>0 and x>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} \sin \left (c t +x \right )^{3}-\sin \left (c t -x \right )^{3}+\frac {2 c t -10 \,{\mathrm e}^{\frac {c t}{10}-\frac {x}{10}}+10 \,{\mathrm e}^{-\frac {c t}{10}-\frac {x}{10}}}{c} & c t <x \\ \sin \left (c t +x \right )^{3}+\sin \left (c t -x \right )^{3}+\frac {-20+2 c t +10 \,{\mathrm e}^{-\frac {c t}{10}-\frac {x}{10}}+10 \,{\mathrm e}^{-\frac {c t}{10}+\frac {x}{10}}}{c}-2 c t +2 x & x <c t \end {array}\right .\right )}{2}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.6 [369] I.C. at \(t=1\)
problem number 369
Added December 20, 2018.
Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018 Solve
\[ u_{tt} = u_{xx} \]
With initial conditions
\begin{align*} u(x,1) &= e^{-(x-6)^2}+e^{-(x+6)^2} \\ \frac {\partial u}{\partial t}(x,1) &= \frac {1}{2} \end{align*}
And boundary conditions \(\frac {\partial u}{\partial x}(0,t)=1\)
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 1] == Sin [x]^3, Derivative [0, 1][u][x, 1] == 1 - E ^(-(x/10))};
bc = Derivative [1, 0][u][0, t] == 1;
sol = AbsoluteTiming [ TimeConstrained [DSolveValue[{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> t > 0], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & x>c t \\ g\left (t-\frac {x}{c}\right ) & x\leq c t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = diff ( u ( x , t), x$2);
ic := u(x, 1) = exp (-( x -6)^2)+ exp (-( x +6)^2), eval ( diff ( u ( x , t ), t ), t =1)= 1/2;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic],u(x,t)) assuming t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = {\mathrm e}^{-\left (-x +t -1\right )^{2}-36} \cosh \left (-12 x +12 t -12\right )+{\mathrm e}^{-\left (x +t -1\right )^{2}-36} \cosh \left (12 x +12 t -12\right )+\frac {t}{2}-\frac {1}{2}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.7 [370] B.C. at \(x=1\)
problem number 370
Added December 20, 2018.
Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018
Solve
\[ \frac {\partial ^2 u}{\partial t^2} = \frac {1}{4} \frac {\partial ^2 u}{\partial x^2} \]
With initial conditions
\begin{align*} u(x,0) &= e^{-x^2}\\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
And Boundary conditions \(\frac {\partial u}{\partial x}(1,t)= 0\)
Mathematica ✗
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == (1* D [u[x, t], {x, 2}])/4;
ic = {u[x, 0] == Exp [-x^2], Derivative [0, 1][u][x, 0] == 0};
bc = Derivative [1, 0][u][1, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0}], 60*10]];
Failed
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2)=(1/4)*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =1)=0;
ic := u(x, 0) = exp (- x ^2), eval ( diff ( u ( x , t ), t ), t =0)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc],u(x,t)) assuming x>0, t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \left \{\begin {array}{cc} {\mathrm e}^{-\frac {t^{2}}{4}-x^{2}} \cosh \left (t x \right ) & \frac {t}{2}<x -1 \\ \cosh \left (\left (x -1\right ) \left (t +2\right )\right ) {\mathrm e}^{-\frac {1}{4} t^{2}-x^{2}-t +2 x -2} & x -1<\frac {t}{2} \end {array}\right .\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.8 [371] Left end free. zero initial velocity (general solution)
problem number 371
Added July 13, 2019.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= f(x)\\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
And boundary condition \(\frac {\partial u}{\partial x}(0,t) = 0\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == f[x], Derivative [0, 1][u][x, 0] == 0};
bc = Derivative [1, 0][u][0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0,c>0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} f(x) & x\geq 0\land t=0 \\ \frac {2 \int _0^{\infty }\cos \left (\sqrt {c^2} t K[1]\right ) \cos (x K[1]) \int _0^{\infty }\cos (x K[1]) f(x)dxdK[1]}{\pi } & x\geq 0\land t>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = c^2*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =0)=0;
ic := u(x,0)=f(x), eval ( diff ( u ( x , t ), t ), t =0)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} f \left (c t +x \right )+f \left (-c t +x \right ) & c t <x \\ f \left (c t +x \right )+f \left (c t -x \right ) & x <c t \end {array}\right .\right )}{2}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.9 [372] Left end free. zero initial velocity (Special solution)
problem number 372
Added July 14, 2019.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= f(x)\\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
And boundary condition \(\frac {\partial u}{\partial x}(0,t) = 0\) using
\begin{align*} c &= 3\\ f(x) &=\left \{ \begin {array} [c]{cc}1 & 4\leq x\leq 5\\ 0 & \text {otherwise}\end {array} \right . \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
c =3;
f [ x_ ]:= Piecewise [{{1,4< x <5},{0, True }}];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == f[x], Derivative [0, 1][u][x, 0] == 0};
bc = Derivative [1, 0][u][0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<x-3 t<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )+\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t+x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & x>3 t \\ \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t-x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )+\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t+x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & x\leq 3 t \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
c :=3;
f := piecewise (4< x and x<5,1, true ,0);
pde := diff ( u ( x , t), t$2) = c^2*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =0)=0;
ic := u(x,0)=f(x), eval ( diff ( u ( x , t ), t ), t =0)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} \left (\left \{\begin {array}{cc} 1 & 4<3 t +x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t +x \right )+\left (\left \{\begin {array}{cc} 1 & 4<x -3 t <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (x -3 t \right ) & 3 t <x \\ \left (\left \{\begin {array}{cc} 1 & 4<3 t +x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t +x \right )+\left (\left \{\begin {array}{cc} 1 & 4<3 t -x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t -x \right ) & x <3 t \end {array}\right .\right )}{2}\]
Hand
solution
Solve \(\frac {\partial ^{2}u}{\partial t^{2}}=c^{2}\frac {\partial ^{2}u}{\partial x^{2}}\) for \(x\geq 0,t\geq 0\) with initial conditions \(u\left ( x,0\right ) =f\left ( x\right ) =\left \{ \begin {array} [c]{cc}1 & 4\leq x\leq 5\\ 0 & \text {otherwise}\end {array} \right . \) and \(\frac {\partial u\left ( x,0\right ) }{\partial t}=0\) and boundary condition \(\frac {\partial u\left ( 0,t\right ) }{\partial x}=0\) (Free end)
The general solution by D’Almbert’s is given by
\[ u\left ( x,t\right ) =\frac {1}{2}\left \{ \begin {array} [c]{ccc}f\left ( x+ct\right ) +f\left ( x-ct\right ) & & x>ct\geq 0\\ f\left ( x+ct\right ) +f\left ( ct-x\right ) & & x\leq ct \end {array} \right . \]
But \(f\left ( x\right ) \) is defined for \(4\leq x\leq 5\) only, hence the solution becomes
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x+ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . +\left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x-ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . & & x>ct\geq 0\\ & & \\ \left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x+ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . +\left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( ct-x\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . & & 0<x\leq ct \end {array} \right . \]
Animation is below
Source code used for the above
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.10 [373] Left end fixed. zero initial velocity (Special solution)
problem number 373
Added January 9, 2020.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= f(x)\\ \frac {\partial u}{\partial t}(x,0) &= 0 \end{align*}
And boundary condition \(u(0,t) = 0\) using
\begin{align*} c &= 3\\ f(x) &=\left \{ \begin {array} [c]{cc}1 & 4\leq x\leq 5\\ 0 & \text {otherwise}\end {array} \right . \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
c =3;
f [ x_ ]:= Piecewise [{{1,4< x <5},{0, True }}];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == f[x], Derivative [0, 1][u][x, 0] == 0};
bc = u[0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<x-3 t<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )+\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t+x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & x>3 t \\ \frac {1}{2} \left (\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t+x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )-\left (\begin {array}{cc} \{ & \begin {array}{cc} 1 & 4<3 t-x<5 \\ 0 & \text {True} \\\end {array} \\\end {array}\right )\right ) & x\leq 3 t \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
c :=3;
f := piecewise (4< x and x<5,1, true ,0);
pde := diff ( u ( x , t), t$2) = c^2*( diff ( u ( x , t), x$2));
bc := u(0,t)=0;
ic := u(x,0)=f(x), D [2]( u )( x ,0)=0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} \left (\left \{\begin {array}{cc} 1 & 4<3 t +x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t +x \right )-\left (\left \{\begin {array}{cc} 1 & 4<3 t -x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t -x \right ) & x <3 t \\ \left (\left \{\begin {array}{cc} 1 & 4<3 t +x <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (3 t +x \right )+\left (\left \{\begin {array}{cc} 1 & 4<x -3 t <5 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\left (x -3 t \right ) & 3 t <x \end {array}\right .\right )}{2}\]
Hand
solution
Solve \(\frac {\partial ^{2}u}{\partial t^{2}}=c^{2}\frac {\partial ^{2}u}{\partial x^{2}}\) for \(x\geq 0,t\geq 0\) with initial conditions \(u\left ( x,0\right ) =f\left ( x\right ) =\left \{ \begin {array} [c]{cc}1 & 4\leq x\leq 5\\ 0 & \text {otherwise}\end {array} \right . \) and \(\frac {\partial u\left ( x,0\right ) }{\partial t}=0\) and boundary condition \(u\left ( 0,t\right ) =0\) (Fixed end)
The general solution by D’Almbert’s is given by
\[ u\left ( x,t\right ) =\frac {1}{2}\left \{ \begin {array} [c]{ccc}f\left ( x+ct\right ) +f\left ( x-ct\right ) & & x>ct\geq 0\\ f\left ( x+ct\right ) -f\left ( ct-x\right ) & & x\leq ct \end {array} \right . \]
But \(f\left ( x\right ) \) is defined for \(4\leq x\leq 5\) only, hence the solution becomes
\[ u\left ( x,t\right ) =\left \{ \begin {array} [c]{ccc}\left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x+ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . +\left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x-ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . & & x>ct\geq 0\\ & & \\ \left \{ \begin {array} [c]{ccc}\frac {1}{2}f\left ( x+ct\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . +\left \{ \begin {array} [c]{ccc}-\frac {1}{2}f\left ( ct-x\right ) & & 4\leq x\leq 5\\ 0 & & \text {otherwise}\end {array} \right . & & 0<x\leq ct \end {array} \right . \]
Animation is below
Source code used for the above
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.11 [374] Left end free. zero initial position (general solution)
problem number 374
Added July 14, 2019.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= 0\\ \frac {\partial u}{\partial t}(x,0) &= g(x) \end{align*}
And boundary condition \(\frac {\partial u}{\partial x}(0,t) = 0\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == 0, Derivative [0, 1][u][x, 0] == g[x]};
bc = Derivative [1, 0][u][0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0,c>0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} 0 & x\geq 0\land t=0 \\ \frac {2 \int _0^{\infty }\frac {\cos (x K[1]) \sin \left (\sqrt {c^2} t K[1]\right ) \int _0^{\infty }\cos (x K[1]) g(x)dx}{\sqrt {c^2} K[1]}dK[1]}{\pi } & x\geq 0\land t>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = c^2*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =0)=0;
ic := u(x,0)=0, eval ( diff ( u ( x , t ), t ), t =0)= g ( x );
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left \{\begin {array}{cc} \int _{-c t +x}^{c t +x}g \left (\zeta \right )d \zeta & c t <x \\ \int _{0}^{c t +x}g \left (\zeta \right )d \zeta +\int _{0}^{c t -x}g \left (\zeta \right )d \zeta & x <c t \end {array}\right .}{2 c}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.12 [375] Left end free. Non zero initial position and velocity (general solution)
problem number 375
Added July 14, 2019.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ u_{tt} = c^2 u_{xx} \]
With initial conditions
\begin{align*} u(x,0) &= f(x)\\ \frac {\partial u}{\partial t}(x,0) &= g(x) \end{align*}
And boundary condition \(\frac {\partial u}{\partial x}(0,t) = 0\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == c^2* D [u[x, t], {x, 2}];
ic = {u[x, 0] == f[x], Derivative [0, 1][u][x, 0] == g[x]};
bc = Derivative [1, 0][u][0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0,c>0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} f(x) & x\geq 0\land t=0 \\ \frac {2 \int _0^{\infty }\cos (x K[1]) \left (\cos \left (\sqrt {c^2} t K[1]\right ) \int _0^{\infty }\cos (x K[1]) f(x)dx+\frac {\sin \left (\sqrt {c^2} t K[1]\right ) \int _0^{\infty }\cos (x K[1]) g(x)dx}{\sqrt {c^2} K[1]}\right )dK[1]}{\pi } & x\geq 0\land t>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = c^2*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =0)=0;
ic := u(x,0)=f(x), eval ( diff ( u ( x , t ), t ), t =0)= g ( x );
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \frac {\left (\left \{\begin {array}{cc} f \left (c t +x \right )+f \left (-c t +x \right )+\frac {\int _{-c t +x}^{c t +x}g \left (\zeta \right )d \zeta }{c} & c t <x \\ \frac {f \left (c t -x \right ) c +f \left (c t +x \right ) c +\int _{0}^{c t +x}g \left (\zeta \right )d \zeta +\int _{0}^{c t -x}g \left (\zeta \right )d \zeta }{c} & x <c t \end {array}\right .\right )}{2}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
5.1.2.13 [376] Left end free with source
problem number 376
Added December 20, 2018.
Example 17, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018
Left end free with initial position and velocity given.
Solve for \(u(x,t)\) with \(x>0,t>0\)
\[ \frac {\partial ^2 u}{\partial t^2} = 9 \frac {\partial ^2 u}{\partial x^2} + f(x,t) \]
With initial conditions
\begin{align*} u(x,0) &= 0\\ \frac {\partial u}{\partial t}(x,0) &= x^3 \end{align*}
And boundary condition \(\frac {\partial u}{\partial x}(0,t) = 0\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, t], {t, 2}] == 9* D [u[x, t], {x, 2}];
ic = {u[x, 0] == 0, Derivative [0, 1][u][x, 0] == x^3};
bc = Derivative [1, 0][u][0, t] == 0;
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, t], {x, t}, Assumptions -> {t > 0, x > 0}], 60*10]];
\[\left \{\left \{u(x,t)\to \begin {array}{cc} \{ & \begin {array}{cc} t x \left (9 t^2+x^2\right ) & x>3 t \\ \frac {1}{12} \left (81 t^4+54 x^2 t^2+x^4\right ) & x\leq 3 t \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , t), t$2) = 9*( diff ( u ( x , t), x$2));
bc := eval ( diff ( u ( x , t ), x ), x =0)=0;
ic := u(x,0)=0, eval ( diff ( u ( x , t ), t ), t =0)= x ^3;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic],u(x,t)) assuming x>0,t>0),output= ' realtime ' ));
\[u \left (x , t\right ) = \left \{\begin {array}{cc} 9 t^{3} x +t \,x^{3} & 3 t <x \\ \frac {27}{4} t^{4}+\frac {9}{2} t^{2} x^{2}+\frac {1}{12} x^{4} & x <3 t \end {array}\right .\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________