3.2.1 Cartesian coordinates (Rectangle, Square)
3.2.1.1 [255] No source
problem number 255
Taken from Maple help pages on PDE. Solve the heat equation for \(u(x,y,t)\)
\[ u_t= \frac {1}{10} \nabla ^2 u(x,y) \]
For \(0<x<1\) and \(0<y<1\) and \(t>0\) . The boundary conditions are
\begin{align*} u(0,y,t) &= 0 \\ u(1,y,t) &= 0 \\ u(x,0,t) &= 0 \\ u(x,1,t) &= 0 \end{align*}
Initial condition is \(u(x,y,0)=x(1-x)(1-y)y\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, y, t], t] == (1*( D [u[x, y, t], {x, 2}] + D [u[x, y, t], {y, 2}]))/10;
ic = u[x, y, 0] == x*(1 - x)*(1 - y)*y;
bc = {u[0, y, t] == 0, u[1, y, t] == 0, u[x, 0, t] == 0, u[x, 1, t] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]];
\[\left \{\left \{u(x,y,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[1]=1}{\overset {\infty }{\sum }}\underset {K[3]=1}{\overset {\infty }{\sum }}\frac {16 \left (-1+(-1)^{K[1]}\right ) \left (-1+(-1)^{K[3]}\right ) e^{\frac {1}{10} t \left (-\pi ^2 K[1]^2-\pi ^2 K[3]^2\right )} \sin (\pi x K[1]) \sin (\pi y K[3])}{\pi ^6 K[1]^3 K[3]^3} & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , y, t), t) = 1/10*( diff ( u ( x , y, t), x$2)+ diff ( u ( x , y, t), y$2));
bc := u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0;
ic := u(x, y, 0) = x*(1-x)*(1-y)*y;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic , bc ], u ( x , y , t ))), output = ' realtime ' ));
\[u \left (x , y , t\right ) = \frac {16 \left (\moverset {\infty }{\munderset {\operatorname {n1} =1}{\sum }}\frac {\moverset {\infty }{\munderset {n =1}{\sum }}\left (-\frac {\sin \left (n \pi x \right ) {\mathrm e}^{-\frac {t \,\pi ^{2} \left (n^{2}+\operatorname {n1}^{2}\right )}{10}} \left (-\left (-1\right )^{n +\operatorname {n1}}+\left (-1\right )^{\operatorname {n1}}+\left (-1\right )^{n}-1\right ) \sin \left (\operatorname {n1} \pi y \right )}{n^{3}}\right )}{\operatorname {n1}^{3}}\right )}{\pi ^{6}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3.2.1.2 [256] Internal source term
problem number 256
Taken from Maple help pages on PDE
Solve the heat equation for \(u(x,y,t)\)
\[ \frac { \partial u}{\partial t}= 1/10 \left ( \frac { \partial ^2 u}{\partial x^2} + \frac { \partial ^2 u}{\partial y^2} \right ) -\frac {1}{5} u(x,y,t); \]
For \(0<x<1\) and \(0<y<1\) and \(t>0\) . The boundary conditions are
\begin{align*} \frac {\partial u}{\partial x} u(0,y,t) &= 0 \\ u(1,y,t) &= 0 \\ u(x,0,t) &= 0 \\ \frac {\partial u}{\partial y} u(x,1,t) &= 0 \\ \end{align*}
Initial condition is \(u(x,y,0)=(1-x^2)(1- \frac {1}{2} y) y\) .
Mathematica ✓
ClearAll [ " Global ` * " ];
pde = D [u[x, y, t], t] == (1*( D [u[x, y, t], {x, 2}] + D [u[x, y, t], {y, 2}]))/10 - (1*u[x, y, t])/5;
ic = u[x, y, 0] == (-x^2 + 1)*(1 - (1/2)*y)*y;
bc = { Derivative [1, 0, 0][u][0, y, t] == 0, u[1, y, t] == 0, u[x, 0, t] == 0, Derivative [0, 1, 0][u][x, 1, t] == 0};
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]];
\[\left \{\left \{u(x,y,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[1]=1}{\overset {\infty }{\sum }}\underset {K[3]=1}{\overset {\infty }{\sum }}-\frac {512 (-1)^{K[1]} \exp \left (t \left (\frac {1}{10} \left (-\frac {1}{4} \pi ^2 (2 K[1]-1)^2-\frac {1}{4} \pi ^2 (2 K[3]-1)^2\right )-\frac {1}{5}\right )\right ) \cos \left (\frac {1}{2} \pi x (2 K[1]-1)\right ) \sin \left (\frac {1}{2} \pi y (2 K[3]-1)\right )}{\pi ^6 (2 K[1]-1)^3 (2 K[3]-1)^3} & (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
pde := diff ( u ( x , y, t), t) = 1/10*( diff ( u ( x , y, t), x$2)+ diff ( u ( x , y, t), y$2)) - 1/5 * u(x,y,t);
ic := u(x, y, 0) = (-x^2+1)*(1-(1/2)*y)*y;
bc := ( D [1]( u ))(0, y, t) = 0,
u(1, y, t) = 0,
u(x, 0, t) = 0,
( D [2]( u ))( x , 1, t) = 0;
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , ic,bc], u(x, y, t))),output= ' realtime ' ));
\[u \left (x , y , t\right ) = \frac {512 \left (\moverset {\infty }{\munderset {\operatorname {n1} =0}{\sum }}\frac {\moverset {\infty }{\munderset {n =0}{\sum }}\frac {\left (-1\right )^{n} {\mathrm e}^{-\frac {\left (2+\left (n^{2}+\operatorname {n1}^{2}+n +\operatorname {n1} +\frac {1}{2}\right ) \pi ^{2}\right ) t}{10}} \cos \left (\frac {\pi x \left (1+2 n \right )}{2}\right ) \sin \left (\frac {\pi y \left (2 \operatorname {n1} +1\right )}{2}\right )}{\left (1+2 n \right )^{3}}}{\left (2 \operatorname {n1} +1\right )^{3}}\right )}{\pi ^{6}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3.2.1.3 [257] Articolo 6.6.3
problem number 257
Added December 20, 2018.
Example 6.6.3 from Partial differential equations and boundary value problems with Maple/George A. Articolo, 2nd ed :
We seek the temperature distribution in a thin rectangular plate over the finite two-dimensional domain \(D = {(x, y) \text {s.t.} 0<x<1, 0<y<1}\) . The lateral surfaces of the plate are insulated. The boundaries \(y = 0\) and \(y = 1\) are fixed at temperature \(0\) , the boundary \(x = 0\) is insulated, and the boundary \(x = 1\) is losing heat by convection into a surrounding medium at temperature \(0\) . The initial temperature distribution f(x, y) is
\[ u(x,y,0) = \left (1- \frac {x^2}{3} \right ) y(1-y) \]
The thermal diffusivity is \(k = \frac {1}{50}\) . Solve for \(u(x,y,t)\) the heat PDE
\[ \frac { \partial u}{\partial t}= k \left ( \frac { \partial ^2 u}{\partial x^2} +\frac { \partial ^2 u}{\partial y^2} \right ) \]
With \(0<x<1,0<y<1\) and \(t>0\) . Boundary conditions are
\begin{align*} \frac {\partial u}{\partial x}(0,y,t) &= 0 \\ \frac {\partial u}{\partial x}(1,y,t) + u(1,y,t) &= 0 \\ u(x,0,t) &= 0\\ u(x,1,t) &=0 \end{align*}
Mathematica ✓
ClearAll [ " Global ` * " ];
k = 1/50;
pde = D [u[x, y, t], t] == k*( D [u[x, y, t], {x, 2}] + D [u[x, y, t], {y, 2}]);
bc = { Derivative [1, 0, 0][u][0, y, t] == 0, Derivative [1, 0, 0][u][1, y, t] + u[1, y, t] == 0, u[x, 0, t] == 0, u[x, 1, t] == 0};
ic = u[x, y, 0] == (1 - (1/3)*x^2)*y*(1 - y);
sol = AbsoluteTiming [ TimeConstrained [ DSolve [{pde, bc, ic}, u[x, y, t], {x, y, t}], 60*10]];
\[\left \{\left \{u(x,y,t)\to \begin {array}{cc} \{ & \begin {array}{cc} \underset {K[1]=1}{\overset {\infty }{\sum }}\underset {K[3]=1}{\overset {\infty }{\sum }}\frac {8 \left (-1+(-1)^{K[3]}\right ) e^{\frac {1}{50} t \left (-\pi ^2 K[3]^2-K[2,K[1]]\right )} \cos \left (x \sqrt {K[2,K[1]]}\right ) \sin (\pi y K[3]) \left (\frac {2 \cos \left (\sqrt {K[2,K[1]]}\right )}{K[2,K[1]]}-\frac {2 (K[2,K[1]]+1) \sin \left (\sqrt {K[2,K[1]]}\right )}{K[2,K[1]]^{3/2}}\right )}{3 \pi ^3 K[3]^3 \left (\sin ^2\left (\sqrt {K[2,K[1]]}\right )+1\right )} & \tan \left (\sqrt {K[2,K[1]]}\right )=\frac {1}{\sqrt {K[2,K[1]]}}\land (K[1]|K[3])\in \mathbb {Z}\land K[1]\geq 1\land K[3]\geq 1\land K[2,K[1]]>0 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart ;
k :=1/50;
pde := diff ( u ( x , y, t), t) = k*( diff ( u ( x , y, t), x$2)+ diff ( u ( x , y, t), y$2));
bc_left_edge := eval ( diff ( u ( x , y , t ), x ), x =0)=0;
bc_right_edge := eval ( diff ( u ( x , y , t ), x ), x =1)+ u (1, y , t )=0;
bc_bottom_edge := u ( x ,0, t )=0;
bc_top_edge := u ( x ,1, t )=0;
bc := bc_left_edge , bc_right_edge , bc_bottom_edge , bc_top_edge ;
ic := u(x, y, 0) = (1-(1/3)*x^2)*y*(1-y);
cpu_time := timelimit (60*10, CodeTools [ Usage ]( assign ( ' sol ' , pdsolve ([ pde , bc,ic], u(x, y, t)) assuming 0 <= x, x <= 1, 0 <= y, y <= 1),output= ' realtime ' ));
\[u \left (x , y , t\right ) = -\frac {16 \left (\moverset {\infty }{\munderset {\operatorname {n1} =1}{\sum }}\frac {\moverset {\infty }{\munderset {n =0}{\sum }}\frac {{\mathrm e}^{-\frac {t \left (\pi ^{2} \operatorname {n1}^{2}+\lambda _{n}^{2}\right )}{50}} \cos \left (\lambda _{n} x \right ) \left (\lambda _{n}^{2} \sin \left (\lambda _{n}\right )-\lambda _{n} \cos \left (\lambda _{n}\right )+\sin \left (\lambda _{n}\right )\right ) \left (\left (-1\right )^{\operatorname {n1}}-1\right ) \sin \left (\operatorname {n1} \pi y \right )}{\lambda _{n}^{2} \left (\sin \left (\lambda _{n}\right ) \cos \left (\lambda _{n}\right )+\lambda _{n}\right )}}{\operatorname {n1}^{3}}\right )}{3 \pi ^{3}}\boldsymbol {\operatorname {where}}\left \{\tan \left (\lambda _{n}\right ) \lambda _{n}-1=0\wedge 0<\lambda _{n}\right \}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________