Added Oct 8, 2019.
Exam problem. Math 5587, fall 2019. UMN
solve for \(u(x,t)\) the PDE \(u_t+\frac {1}{x^2+4} u_x= 0\) IC \(u(x,0)=e^{x^3+12 x}\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x,t], t] +1/(x^2+4)*D[u[x,t], x]== 0; ic = u[x,0]==Exp[x^3+12*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic}, u[x,t], {x,t}], 60*10]];
Maple ✓
restart; pde := diff(u(x,t), t) +1/(x^2+4)*diff(u(x,t),x) =0; ic:=u(x,0)=exp(x^3+12*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,t))),output='realtime')); sol:=simplify(expand(sol));
Hand solution
Solve
with initial conditions \(u\left ( x,0\right ) =e^{x^{3}+12x}\).
Solution
Let \(u=u\left ( x\left ( t\right ) ,t\right ) \). Then
Solving (3) gives
We just need to find \(x\left ( 0\right ) \) to finish the solution. From (4)
At \(t=0\)
Hence (6) becomes
Substituting this back into (5) gives
The following is an animation of the solution
Source code used for the above
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________