Added December 20, 2018.
Third oder PDE. Solve for \(u(x,y)\)
With initial conditions
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, t], t] == -D[u[x, t], {x, 3}]; ic = u[x, 0] == f[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic}, u[x, t], {x, t}], 60*10]];
Maple ✓
restart; pde := diff(u(x, t), t)=- diff(u(x, t), x$3); ic := u(x,0)=f(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic],u(x,t))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________