From Mathematica DSolve help pages.
Solve for \(V(t,s)\)
With boundary condition \( v(T,s) = \psi (s)\)
Reference https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_equation
Mathematica ✓
ClearAll["Global`*"]; pde = D[v[t, s], t] + (1*sigma^2*s^2*D[v[t, s], {s, 2}])/2 + (r - q)*s*D[v[t, s], s] - r*v[t, s] == 0; bc = v[T, s] == psi[s]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, v[t, s], {t, s}], 60*10]];
Maple ✓
restart; interface(showassumed=0); pde := diff(v(t, s), t) +s^2*(diff(v(t, s), s, s))/(2*sigma^2)+(r-q)*s*(diff(v(t, s), s))-r*v(t, s) = 0; ic:=v(T, s) = psi(s); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],v(t,s))),output='realtime'));