6.7.7 4.1

6.7.7.1 [1634] Problem 1
6.7.7.2 [1635] Problem 2
6.7.7.3 [1636] Problem 3
6.7.7.4 [1637] Problem 4
6.7.7.5 [1638] Problem 5

6.7.7.1 [1634] Problem 1

problem number 1634

Added June 19, 2019.

Problem Chapter 7.4.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a w_y + b w_z = c \sinh ^k(\lambda x)+s \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] +  b*D[w[x,y,z],z]== c*Sinh[lambda*x]^k+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1(y-a x,z-b x)+\frac {c \sqrt {\cosh ^2(\lambda x)} \text {sech}(\lambda x) \sinh ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {k+1}{2},\frac {k+3}{2},-\sinh ^2(\lambda x)\right )}{k \lambda +\lambda }+s x\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)=c*sinh(lambda*x)^k+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left (x , y , z\right ) = s x +\int c \left (\sinh ^{k}\left (\lambda x \right )\right )d x +\mathit {\_F1} \left (-a x +y , -b x +z \right )\]

____________________________________________________________________________________

6.7.7.2 [1635] Problem 2

problem number 1635

Added June 19, 2019.

Problem Chapter 7.4.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \sinh (\lambda x) w_z = k \sinh (\beta y)+s \sinh (\gamma z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +  c*Sinh[lambda*x]*D[w[x,y,z],z]== k*Sinh[beta*y]+s*Sinh[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \int _1^x\frac {s \sinh \left (\frac {\gamma (a \lambda z-c \cosh (\lambda x)+c \cosh (\lambda K[1]))}{a \lambda }\right )+k \sinh \left (\beta \left (y+\frac {b (K[1]-x)}{a}\right )\right )}{a}dK[1]+c_1\left (y-\frac {b x}{a},z-\frac {c \cosh (\lambda x)}{a \lambda }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*sinh(lambda*x)*diff(w(x,y,z),z)=k*sinh(beta*y)+s*sinh(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left (x , y , z\right ) = \int _{}^{x}\frac {k \sinh \left (\frac {\left (a y -\left (-\mathit {\_a} +x \right ) b \right ) \beta }{a}\right )+s \sinh \left (\frac {\left (a \lambda z +c \cosh \left (\mathit {\_a} \lambda \right )-c \cosh \left (\lambda x \right )\right ) \gamma }{a \lambda }\right )}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {a y -b x}{a}, \frac {a \lambda z -c \cosh \left (\lambda x \right )}{a \lambda }\right )\]

____________________________________________________________________________________

6.7.7.3 [1636] Problem 3

problem number 1636

Added June 19, 2019.

Problem Chapter 7.4.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a \sinh ^n(\beta x) w_y + c \sinh ^k(\lambda x) w_z = c \sinh ^m(\gamma x)+s \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Sinh[beta*x]^n*D[w[x, y,z], y] +  c*Sinh[lambda*x]^k*D[w[x,y,z],z]== c*Sinh[gamma*x]^m+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {a \sqrt {\cosh ^2(\beta x)} \text {sech}(\beta x) \sinh ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {n+1}{2},\frac {n+3}{2},-\sinh ^2(\beta x)\right )}{\beta n+\beta },z-\frac {c \sqrt {\cosh ^2(\lambda x)} \text {sech}(\lambda x) \sinh ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {k+1}{2},\frac {k+3}{2},-\sinh ^2(\lambda x)\right )}{k \lambda +\lambda }\right )+\frac {c \sqrt {\cosh ^2(\gamma x)} \text {sech}(\gamma x) \sinh ^{m+1}(\gamma x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {m+1}{2},\frac {m+3}{2},-\sinh ^2(\gamma x)\right )}{\gamma m+\gamma }+s x\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*sinh(beta*x)^n*diff(w(x,y,z),y)+ c*sinh(lambda*x)^k*diff(w(x,y,z),z)=c*sinh(gamma*x)^m+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left (x , y , z\right ) = s x +\int c \left (\sinh ^{m}\left (\gamma x \right )\right )d x +\mathit {\_F1} \left (y -\left (\int a \left (\sinh ^{n}\left (\beta x \right )\right )d x \right ), z -\left (\int c \left (\sinh ^{k}\left (\lambda x \right )\right )d x \right )\right )\]

____________________________________________________________________________________

6.7.7.4 [1637] Problem 4

problem number 1637

Added June 19, 2019.

Problem Chapter 7.4.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \sinh (\beta y) w_y + c \sinh (\lambda x) w_z = k \sinh (\gamma z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Sinh[beta*y]*D[w[x, y,z], y] +  c*Sinh[lambda*x]*D[w[x,y,z],z]== k*Sinh[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \int _1^x\frac {k \sinh \left (\frac {\gamma (a \lambda z-c \cosh (\lambda x)+c \cosh (\lambda K[1]))}{a \lambda }\right )}{a}dK[1]+c_1\left (z-\frac {c \cosh (\lambda x)}{a \lambda },\frac {\log \left (\tanh \left (\frac {\beta y}{2}\right )\right )}{\beta }-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*diff(w(x,y,z),x)+ b*sinh(beta*y)*diff(w(x,y,z),y)+ c*sinh(lambda*x)*diff(w(x,y,z),z)=k*sinh(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left (x , y , z\right ) = \int _{}^{x}\frac {k \sinh \left (\frac {\left (a \lambda z +c \cosh \left (\mathit {\_a} \lambda \right )-c \cosh \left (\lambda x \right )\right ) \gamma }{a \lambda }\right )}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {-b \beta x -2 a \arctanh \left ({\mathrm e}^{\beta y}\right )}{b \beta }, \frac {a \lambda z -c \cosh \left (\lambda x \right )}{a \lambda }\right )\]

____________________________________________________________________________________

6.7.7.5 [1638] Problem 5

problem number 1638

Added June 19, 2019.

Problem Chapter 7.4.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a_1 \sinh ^{n_1}(\lambda _1 x) w_x + b_1 \sinh ^{m_1}(\beta _1 y) w_y + c_1 \sinh ^{k_1}(\gamma _1 z) w_z = a_2 \sinh ^{n_2}(\lambda _2 x) + b_2 \sinh ^{m_2}(\beta _2 y) w_y + c_2 \sinh ^{k_2}(\gamma _2 z) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a1*Sinh[lambda1*x]^n1*D[w[x, y,z], x] + b1*Sinh[beta1*x]^m1*D[w[x, y,z], y] +  c1*Sinh[gamma1*x]^k1*D[w[x,y,z],z]== a2*Sinh[lambda1*x]^n2 + b2*Sinh[beta2*x]^m2 +  c2*Sinh[gamma2*x]^k2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \int _1^x\frac {\sinh ^{-\text {n1}}(\text {lambda1} K[3]) \left (\text {c2} \sinh ^{\text {k2}}(\text {gamma2} K[3])+\text {b2} \sinh ^{\text {m2}}(\text {beta2} K[3])+\text {a2} \sinh ^{\text {n2}}(\text {lambda1} K[3])\right )}{\text {a1}}dK[3]+c_1\left (y-\int _1^x\frac {\text {b1} \sinh ^{\text {m1}}(\text {beta1} K[1]) \sinh ^{-\text {n1}}(\text {lambda1} K[1])}{\text {a1}}dK[1],z-\int _1^x\frac {\text {c1} \sinh ^{\text {k1}}(\text {gamma1} K[2]) \sinh ^{-\text {n1}}(\text {lambda1} K[2])}{\text {a1}}dK[2]\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a1*sinh(lambda1*x)^n1*diff(w(x,y,z),x)+ b1*sinh(beta1*x)^m1*diff(w(x,y,z),y)+ c1*sinh(gamma1*x)^k1*diff(w(x,y,z),z)=a2*sinh(lambda1*x)^n2 + b2*sinh(beta2*x)^m2 +  c2*sinh(gamma2*x)^k2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________