Mathematica
ClearAll["Global`*"] mat={{0,1}, {-2,-3}} MatrixExp[mat t]; MatrixForm[%]
Now verify the result by solving for \(e^{At}\) using the method would one would do by hand, if a computer was not around. There are a number of methods to do this by hand. The eigenvalue method, based on the Cayley Hamilton theorem will be used here. Find the eigenvalues of \(|A-\lambda I|\)
m = mat-lambda IdentityMatrix[Length[mat]]
Det[m]
sol=Solve[%==0,lambda]
Out[15]= {{lambda->-2},{lambda->-1}}
eig1=lambda/.sol[[1]] eig2=lambda/.sol[[2]]
Out[16]= -2 Out[17]= -1
(*setup the equations to find b0,b1*) eq1 = Exp[eig1 t]==b0+b1 eig1; eq2 = Exp[eig2 t]==b0+b1 eig2; sol = First@Solve[{eq1,eq2},{b0,b1}]
(*Now find e^At*) b0=b0/.sol[[1]]
b1=b1/.sol[[2]]
b0 IdentityMatrix[Length[mat]]+b1 mat; Simplify[%] MatrixForm[%]
The answer is the same given by Mathematica’s command MatrixExp[]
Matlab
syms t A=[0 1;-2 -3]; expm(t*A)
ans = [2/exp(t)-1/exp(2*t),1/exp(t)-1/exp(2*t)] [2/exp(2*t)-2/exp(t),2/exp(2*t)-1/exp(t)]
pretty(ans)
+- -+ | 2 exp(-t)- exp(-2 t),exp(-t)-exp(-2 t) | | | | 2 exp(-2 t)-2 exp(-t),2 exp(-2 t)-exp(-t)| +- -+
Maple
restart; A:=Matrix([[0,1],[-2,-3]]); LinearAlgebra:-MatrixExponential(A,t);