2.593   ODE No. 593

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ y'(x)=\frac {e^x F\left (y(x)^{3/2}-\frac {3 e^x}{2}\right )}{\sqrt {y(x)}} \] Mathematica : cpu = 44.4923 (sec), leaf count = 166

\[\text {Solve}\left [c_1=\int _1^{y(x)} \frac {\sqrt {K[2]}-\left (F\left (K[2]^{3/2}-\frac {3 e^x}{2}\right )-1\right ) \int _1^x \frac {3 e^{K[1]} \sqrt {K[2]} F'\left (K[2]^{3/2}-\frac {3 e^{K[1]}}{2}\right )}{2 \left (F\left (K[2]^{3/2}-\frac {3 e^{K[1]}}{2}\right )-1\right )^2} \, dK[1]}{F\left (K[2]^{3/2}-\frac {3 e^x}{2}\right )-1} \, dK[2]+\int _1^x -\frac {e^{K[1]} F\left (y(x)^{3/2}-\frac {3 e^{K[1]}}{2}\right )}{F\left (y(x)^{3/2}-\frac {3 e^{K[1]}}{2}\right )-1} \, dK[1],y(x)\right ]\]

Maple : cpu = 0.559 (sec), leaf count = 35

\[ \left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\!{1\sqrt {{\it \_a}} \left ( F \left ( {{\it \_a}}^{{\frac {3}{2}}}-{\frac {3\,{{\rm e}^{x}}}{2}} \right ) -1 \right ) ^{-1}}\,{\rm d}{\it \_a}-{{\rm e}^{x}}-{\it \_C1}=0 \right \} \]