#### 2.832   ODE No. 832

$y'(x)=\frac {y(x) (y(x)+x+1)}{(x+1) \left (y(x)^4+y(x)^3+y(x)^2+x\right )}$ Mathematica : cpu = 2.1788 (sec), leaf count = 2497

$\left \{\left \{y(x)\to -\frac {1}{2} \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}-\frac {1}{2} \sqrt {-\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}-\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {24 (c_1+\log (x+1))+\frac {117}{8}}{4 \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}}-\frac {23}{8}}-\frac {3}{8}\right \},\left \{y(x)\to -\frac {1}{2} \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}+\frac {1}{2} \sqrt {-\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}-\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {24 (c_1+\log (x+1))+\frac {117}{8}}{4 \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}}-\frac {23}{8}}-\frac {3}{8}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}-\frac {1}{2} \sqrt {-\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}-\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}+\frac {24 (c_1+\log (x+1))+\frac {117}{8}}{4 \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}}-\frac {23}{8}}-\frac {3}{8}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}+\frac {1}{2} \sqrt {-\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}-\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}+\frac {24 (c_1+\log (x+1))+\frac {117}{8}}{4 \sqrt {\frac {3 \sqrt [3]{2} (-8 x+3 c_1+3 \log (x+1)+2)}{\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}+\frac {\sqrt [3]{1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+\sqrt {\left (1944 (c_1+\log (x+1)){}^2+972 (c_1+\log (x+1))+3726 x+432\right ){}^2-4 (-144 x+54 (c_1+\log (x+1))+36){}^3}+432}}{6 \sqrt [3]{2}}-\frac {23}{16}}}-\frac {23}{8}}-\frac {3}{8}\right \}\right \}$ Maple : cpu = 0.143 (sec), leaf count = 31

$\left \{ \ln \left ( 1+x \right ) +{\frac {x}{y \left ( x \right ) }}-{\frac { \left ( y \left ( x \right ) \right ) ^{3}}{3}}-{\frac { \left ( y \left ( x \right ) \right ) ^{2}}{2}}-y \left ( x \right ) +{\it \_C1}=0 \right \}$