#### 2.592   ODE No. 592

$y'(x)=\frac {F\left (-\frac {2 x^3}{5}+y(x)-2 \sqrt {x}\right )+\frac {6 x^3}{5}+\sqrt {x}}{x}$ Mathematica : cpu = 0.517571 (sec), leaf count = 241

$\text {Solve}\left [\int _1^{y(x)}-\frac {F\left (-\frac {2 x^3}{5}-2 \sqrt {x}+K[2]\right ) \int _1^x\left (-\frac {6 F'\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+K[2]\right ) K[1]^2}{5 F\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+K[2]\right )^2}-\frac {F'\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+K[2]\right )}{F\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+K[2]\right )^2 \sqrt {K[1]}}\right )dK[1]+1}{F\left (-\frac {2 x^3}{5}-2 \sqrt {x}+K[2]\right )}dK[2]+\int _1^x\left (\frac {6 K[1]^2}{5 F\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+y(x)\right )}+\frac {1}{F\left (-\frac {2}{5} K[1]^3-2 \sqrt {K[1]}+y(x)\right ) \sqrt {K[1]}}+\frac {1}{K[1]}\right )dK[1]=c_1,y(x)\right ]$ Maple : cpu = 0.138 (sec), leaf count = 33

$\left \{ \int _{{\it \_b}}^{y \left ( x \right ) }\! \left ( F \left ( {\it \_a}-{\frac {2\,{x}^{3}}{5}}-2\,\sqrt {x} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}-\ln \left ( x \right ) -{\it \_C1}=0 \right \}$