#### 2.297   ODE No. 297

$2 x \left (5 x^2+y(x)^2\right ) y'(x)-x^2 y(x)+y(x)^3=0$ Mathematica : cpu = 0.140979 (sec), leaf count = 216

$\left \{\left \{y(x)\to \text {Root}\left [-\text {\#1}^5+\frac {\text {\#1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,1\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {\#1}^5+\frac {\text {\#1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,2\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {\#1}^5+\frac {\text {\#1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,3\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {\#1}^5+\frac {\text {\#1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,4\right ]\right \},\left \{y(x)\to \text {Root}\left [-\text {\#1}^5+\frac {\text {\#1}^2 e^{3 c_1}}{x^{3/2}}+3 e^{3 c_1} \sqrt {x}\& ,5\right ]\right \}\right \}$ Maple : cpu = 0.313 (sec), leaf count = 29

$\left \{ y \left ( x \right ) = \left ( {\it RootOf} \left ( {x}^{9}{\it \_C1}\,{{\it \_Z}}^{45}-{{\it \_Z}}^{18}-6\,{{\it \_Z}}^{9}-9 \right ) \right ) ^{{\frac {9}{2}}}x \right \}$