2.1906   ODE No. 1906

\[ \left \{x'(t)=x(t)+y(t)-z(t),y'(t)=-x(t)+y(t)+z(t),z'(t)=x(t)-y(t)+z(t)\right \} \] Mathematica : cpu = 0.0391274 (sec), leaf count = 278


\[\left \{\left \{x(t)\to \frac {1}{3} c_1 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_2 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_3 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right ),y(t)\to \frac {1}{3} c_2 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_3 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_1 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right ),z(t)\to \frac {1}{3} c_3 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_1 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_2 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )\right \}\right \}\] Maple : cpu = 0.085 (sec), leaf count = 120


\[\left \{x \relax (t ) = {\mathrm e}^{t} \left (\sin \left (\sqrt {3}\, t \right ) c_{2}+\cos \left (\sqrt {3}\, t \right ) c_{3}+c_{1}\right ), y \relax (t ) = \frac {{\mathrm e}^{t} \left (c_{2} \sqrt {3}-c_{3}\right ) \cos \left (\sqrt {3}\, t \right )}{2}+\frac {{\mathrm e}^{t} \left (-c_{3} \sqrt {3}-c_{2}\right ) \sin \left (\sqrt {3}\, t \right )}{2}+c_{1} {\mathrm e}^{t}, z \relax (t ) = \frac {{\mathrm e}^{t} \left (-c_{2} \sqrt {3}-c_{3}\right ) \cos \left (\sqrt {3}\, t \right )}{2}+\frac {{\mathrm e}^{t} \left (c_{3} \sqrt {3}-c_{2}\right ) \sin \left (\sqrt {3}\, t \right )}{2}+c_{1} {\mathrm e}^{t}\right \}\]