2.1034   ODE No. 1034

\[ y''(x)-y'(x)+e^{2 x} y(x)=0 \] Mathematica : cpu = 0.0088873 (sec), leaf count = 20


\[\left \{\left \{y(x)\to c_1 \cos \left (e^x\right )+c_2 \sin \left (e^x\right )\right \}\right \}\] Maple : cpu = 0.013 (sec), leaf count = 15


\[y \relax (x ) = c_{1} \sin \left ({\mathrm e}^{x}\right )+c_{2} \cos \left ({\mathrm e}^{x}\right )\]

Hand solution

\[ y^{\prime \prime }-y^{\prime }+e^{2x}y=0 \]

Let \(y\relax (x) =\eta \left (\xi \right ) \) where \(\xi =e^{x}\), hence

\begin {align*} \frac {dy}{dx} & =\frac {d\eta }{d\xi }\frac {d\xi }{dx}\\ & =\frac {d\eta }{d\xi }e^{x} \end {align*}

And

\begin {align*} \frac {d^{2}y}{dx^{2}} & =\frac {d}{dx}\left (\frac {d\eta }{d\xi }e^{x}\right ) \\ & =\frac {d^{2}\eta }{d\xi ^{2}}\frac {d\xi }{dx}\left (e^{x}\right ) +\frac {d\eta }{d\xi }\left (e^{x}\right ) \\ & =\frac {d^{2}\eta }{d\xi ^{2}}\left (e^{x}\right ) \left (e^{x}\right ) +\frac {d\eta }{d\xi }\left (e^{x}\right ) \\ & =\frac {d^{2}\eta }{d\xi ^{2}}\left (e^{2x}\right ) +\frac {d\eta }{d\xi }\left (e^{x}\right ) \end {align*}

Hence the original ODE becomes

\begin {align*} \frac {d^{2}\eta }{d\xi ^{2}}\left (e^{2x}\right ) +\frac {d\eta }{d\xi }\left ( e^{x}\right ) -\frac {d\eta }{d\xi }\left (e^{x}\right ) +e^{2x}\eta & =0\\ \eta ^{\prime \prime }+\eta & =0 \end {align*}

This is standard second order with constant coefficients. The solution is

\[ \eta =c_{1}\cos \left (\xi \right ) +c_{2}\sin \left (\xi \right ) \]

Substituting back

\[ y\relax (x) =c_{1}\cos \left (e^{x}\right ) +c_{2}\sin \left ( e^{x}\right ) \]

Verification