ODE No. 10

\[ y(x) f'(x)-f(x) f'(x)+y'(x)=0 \] Mathematica : cpu = 0.023509 (sec), leaf count = 18

DSolve[-(f[x]*Derivative[1][f][x]) + y[x]*Derivative[1][f][x] + Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to f(x)+c_1 e^{-f(x)}-1\right \}\right \}\] Maple : cpu = 0.022 (sec), leaf count = 15

dsolve(diff(y(x),x)+diff(f(x),x)*y(x)-f(x)*diff(f(x),x) = 0,y(x))
 

\[y \left (x \right ) = f \left (x \right )-1+{\mathrm e}^{-f \left (x \right )} c_{1}\]

Hand solution

\begin {equation} \frac {dy}{dx}+y\left ( x\right ) \frac {df}{dx}=f\left ( x\right ) \frac {df}{dx} \tag {1} \end {equation}

Integrating factor \(\mu =e^{\int \frac {df}{dx}dx}=e^{f}\).   Therefore (1) becomes\[ \frac {d}{dx}\left ( e^{f}y\left ( x\right ) \right ) =e^{f}f\left ( x\right ) \frac {df}{dx}\] Integrating\begin {align*} e^{f}y\left ( x\right ) & =\int e^{f}f\left ( x\right ) \frac {df}{dx}dx+C\\ y\left ( x\right ) & =e^{-f}\int e^{f}fdf+e^{-f}C \end {align*}

But \(\int e^{f}fdf\) is the same as \(\int e^{x}xdx\) which by integration by parts gives \(e^{x}\left ( x-1\right ) \) or in terms of \(f\), gives \(e^{f}\left ( f-1\right ) \). Hence the above becomes\begin {align*} y\left ( x\right ) & =e^{-f}\left ( e^{f}\left ( f-1\right ) \right ) +e^{-f}C\\ & =f-1+e^{-f}C \end {align*}