#### 2.746   ODE No. 746

$y'(x)=-\frac {i \left (2 x^2 y(x)^2+x^4+y(x)^4+i x\right )}{y(x)}$ Mathematica : cpu = 44.9395 (sec), leaf count = 0 , could not solve

DSolve[Derivative[1][y][x] == ((-I)*(I*x + x^4 + 2*x^2*y[x]^2 + y[x]^4))/y[x], y[x], x]

Maple : cpu = 0.443 (sec), leaf count = 232

$\left \{ y \left ( x \right ) ={\frac {\sqrt {2}}{2\,{{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+2\,{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )}}\sqrt { \left ( \left ( 1+i\sqrt {3} \right ) {\it \_C1}\,{{\rm Ai}^{(1)}\left (-\sqrt [3]{-8\,i}x\right )}+ \left ( 1+i\sqrt {3} \right ) {{\rm Bi}^{(1)}\left (-\sqrt [3]{-8\,i}x\right )}-2\,{x}^{2} \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) \right ) \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) }},y \left ( x \right ) =-{\frac {\sqrt {2}}{2\,{{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+2\,{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )}}\sqrt { \left ( \left ( 1+i\sqrt {3} \right ) {\it \_C1}\,{{\rm Ai}^{(1)}\left (-\sqrt [3]{-8\,i}x\right )}+ \left ( 1+i\sqrt {3} \right ) {{\rm Bi}^{(1)}\left (-\sqrt [3]{-8\,i}x\right )}-2\,{x}^{2} \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) \right ) \left ( {{\rm Ai}\left (-\sqrt [3]{-8\,i}x\right )}{\it \_C1}+{{\rm Bi}\left (-\sqrt [3]{-8\,i}x\right )} \right ) }} \right \}$